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Abstract: The global demand for fish products is continuously increasing as the population grows,
and aquaculture plays an important role in supplying this demand. However, industrial antibiotic
misuse has contributed to the spread of antimicrobial resistance among pathogenic bacteria, therefore,
several antibiotic alternatives have been proposed. In this study, we have analyzed the effects
of Allium-derived propyl propane thiosulfonate (PTSO) in European seabass juveniles’ growth
and performance. These effects were tested by measuring the body weight and analyzing the gut
microbiome of fish after 89 days of feeding trial. The relative abundance of potentially pathogenic
Vibrio in the foregut and hindgut of supplemented fish decreased, while Pseudomonas and Kocuria
increased significantly. Alpha diversity indices significantly decreased in both gut regions of fish fed
with Allium-derived PTSO supplemented diet, as well as between bacterial community composition.
These results may indicate a positive effect of the supplementation in the diet with Allium-derived
PTSO, reducing potentially pathogenic Vibrio and increasing body weight at the end of the experiment
(89 days). However, this supplementation with Allium-derived PTSO produces changes in the
diversity and composition of microbial communities, so further experiments would be necessary to
explore bacterial community composition and health relationship.

Keywords: Allium-derived phytobiotic; body weight; European seabass (Dicentrarchus labrax)
juveniles; gut microbiota; propyl propane thiosulfonate (PTSO)

1. Introduction

World population has increased exponentially in the last years, and it is expected to
continue growing in the coming years, reaching 9.7 billion in the year 2050 and almost
11 billion people worldwide in the year 2100 [1]. This increase in world population implies
an increase in food demand, which can be partially covered by aquaculture products,
given the high impact of land-based animal production and the stagnation of wild fishery
catches [2]. Currently, this industry plays an important role in supplying the world food
demand and protein source, with a global aquaculture production of 82 million tons
in 2018 and an economic value of USD $250 billion [3]. However, economic profits in
the industry are affected by fish diseases caused by several pathogenic bacteria such as
Aeromonas, Vibrio, or Photobacterium [4]. Infections of these pathogenic bacteria are treated
by high doses of antibiotics, given the high fish stocking densities and the impossibility of
individual treatment [5]. Furthermore, in the aquaculture industry, antibiotics have been
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used as growth promoters (antibiotic growth promoters, AGP) for several years, showing
an improvement in feed efficiency and growth performance in different fish species [6,7].
However, the extensive use of antibiotics for growth-promoting and therapeutic purposes
in aquaculture systems has increased the antibiotic resistance of pathogenic bacteria [8].
Therefore, a worldwide effort is necessary to reduce and rationalize the use of antibiotics in
livestock and aquaculture. For this reason, the use of antibiotic growth promoters (AGPs)
in animal feed was banned by the European Union in 2006 [9] and by other countries in the
following years [10,11].

Several feed additives have been proposed as alternatives to AGPs in the aquaculture
industry. The most promising alternatives include enzymes, bacteriophages, probiotics,
prebiotics, and phytobiotics [12–14]. Phytobiotics are defined as plant-derived bioactive
compounds supplemented in the diet to improve animal productivity [15]. Phytobiotics are
known to have antimicrobial activity against pathogenic bacteria and can act as prebiotics,
facilitating a continuous supply of specific substrates for intestinal microbiota or minimizing
the risk of pathogenic bacteria development [16]. These products also act as stimulant
of saliva and bile secretion, which helps to increase productive parameters [17]. Many
potential herbal plants have been identified and used in aquaculture for improvement of
fish health, including more than 60 different medicinal plant species [18,19].

Allium species, mainly garlic (Allium sativum) and onion (Allium cepa), produce a wide
variety of bioactive compounds with antifungal, antimicrobial, and antioxidant activity [20].
Dietary supplementation of these compounds has shown promising results, improving the
health and productive parameters of goats, cattle, pigs and poultry [21]. The use of A. cepa
extract in cattle produced no changes in milk attributes [22], while in goats, A. sativum oil
showed a beneficial effect in the milks’ fatty acid profile [23]. The inclusion of Allium in
growing finishing pigs showed a reduction of Salmonella, an increase in Lactobacillus and
acid levels in feces [24], and an increased growth performance [25]. In the poultry industry,
Allium supplementation in laying hens improved health status, intestinal microbiota, and
increased egg size and weight [26,27]; it also increased growth performance, immunity, and
antioxidant status of broiler chickens [28,29]. Application of Allium species in fish farming
has become popular for promoting growth, improving the activity of defense systems, and
protecting against diseases caused by pathogenic bacteria [21,30]. The inclusion of onion
(A. cepa) powder in the diet of beluga juveniles (Huso huso) improved growth performance,
immune function, and blood parameters [31]. Regarding the dietary supplementation of
garlic (A. sativum) extract, it has been proven that it promotes growth, enhances the immune
system, and improves the control of pathogens [30,32]. Inclusion of garlic in diet showed
an increase in weight gain and growth rate of rainbow trout (Oncorhynchus mykiss) [33],
an improvement of food digestibility and biochemical and immunohematological effects
of Eurasian perch (Perca fluviatilis) juveniles [34], as well as an increase in the immune
parameters of skin mucus of guppy fish (Poecilia reticulata) [35]. Furthermore, dietary
inclusion of garlic has demonstrated its ability to control pathogens of host, showing
antimicrobial activity against fungi and bacteria, including Pseudomonas fluorescens or Vibrio
anguillarum [30,32].

The activity of these plant compounds has been related to secondary metabolites, volatile
organosulfur compounds such as ajoene, allicin, isoalliin, methiin, propiin, propyl propane
thiosulfonate (PTSO), and propyl propane thiosulfinate (PTS) [30,36]. PTS and PTSO (Supple-
mentary Figure S1) have shown antibacterial, antifungal [37,38], and anticoccidial activity [39].
Furthermore, PTSO showed beneficial effects on intestinal health in several animal species [36]
and changes in gut microbiota and growth performance of different livestock animals, such
as mice, broiler chickens, laying hens, and pigs [24,27,40–44]. In addition, recent studies
using experimental animals have shown that PTSO is a toxicologically safe compound [45].
However, the potential effects of Allium-derived PTSO on intestinal microbiota and body
weight of European seabass juveniles has not yet been explored.

Hence, our aim in this study was to evaluate the effects of Allium-derived PTSO on
the European seabass (D. labrax) juveniles’ growth performance, as well as its foregut and
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hindgut microbiota via high-throughput sequencing of the V6-V8 region of 16S rRNA gene.
As described below, this approach shows that the inclusion of this Allium-based product
increases fish growth performance and induces changes in the gut microbiota after 89 days
of feeding trial, including the reduction of potential pathogens such as Vibrio populations.

2. Results
2.1. Effect of Feeding Diet on European Seabass Juvenile Growth Performance

No differences appeared in the initial body weight between the fish fed with the
control or Allium-derived PSTO supplemented diet (Table 1, Figure 1). European seabass
juveniles supplemented with Allium-derived PTSO showed an increase in body weight at
the end of the feeding trial (Day 89) (Table 1, Figure 1). However, no differences in body
weight appeared between fish fed with a control diet or Allium-derived PTSO along the
experiment, showing similar body weight at days 12, 26, 42, and 63 (Table 1, Figure 1).

Table 1. General linear mixed models exploring the effects of diet in body weight in European
seabass juveniles fed with a control diet or supplemented with Allium-derived PTSO along 89 days of
experiment. Significant p-values are shown in bold.

Control Allium-Derived PTSO p

Body Weight Day 0 (g/fish) 3.72 ± 0.05 3.84 ± 0.02 0.110
Body Weight Day 12 (g/fish) 4.64 ± 0.06 4.70 ± 0.04 0.438
Body Weight Day 26 (g/fish) 5.90 ± 0.12 5.87 ± 0.09 0.818
Body Weight Day 42 (g/fish) 8.21 ± 0.12 8.14 ± 0.08 0.640
Body Weight Day 63 (g/fish) 11.96 ± 0.09 12.25 ± 0.10 0.089
Body Weight Day 89 (g/fish) 21.14 ± 0.21 22.08 ± 0.08 0.013
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Figure 1. Evolution of growth performance of European seabass (D. labrax) juveniles fed with
control diet or supplemented with Allium-derived PTSO along the feeding trial. Error bars show
standard error.

2.2. Bacterial Community Composition

The foregut microbiota of juvenile European seabass was dominated at class level by
Gammaproteobacteria (47%), Alphaproteobacteria (25%), Betaproteobacteria (9%), Actinobacte-
ria (8%), and Bacilli (8%) (Figure 2). Fish supplemented with Allium-derived PTSO showed
a significant decrease in Alphaproteobacteria (13%), Betaproteobacteria (7%), and Bacilli (7%),
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as well as an increase in Actinobacteria (21%) (Figure 2). At the genus level, the foregut of
control fish was dominated by Ochrobactrum (22%), Pseudomonas (19%), and Vibrio (19%). In
the foregut of Allium-derived PTSO fish an increase in Pseudomonas (40%) and Kocuria (15%),
and a decrease in Vibrio (<1%) and Ochrobactrum (11%) were observed (Figures 3 and 4).
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The bacterial composition of the hindgut of control fish was similar to their foregut,
dominated at class level by Alphaproteobacteria (41%), Gammaproteobacteria (40%), Betapro-
teobacteria (7%), Bacilli (5%), and Actinobacteria (5%) (Figure 2). The hindgut microbiota of
Allium-derived PTSO supplemented fish showed a significant increase in Actinobacteria
(13%) and decrease in Betaproteobacteria (4%) and in the minority class Mollicutes (Figure 4).
At the genus level, the foregut of control fish was dominated by Ochrobactrum (39%), Pseu-
domonas (18%), and Vibrio (15%). In the hindgut of Allium-derived PTSO supplemented
fish, an increase in Kocuria (9% respect to 1% in control fish) and Pseudomonas (41%) was
observed, as well as a decrease in Vibrio (<1%) (Figures 3 and 4).

2.3. Effect of Feeding Diet on Alpha and Beta Diversity

Supplementing the diet of European seabass juveniles with Allium-derived PTSO
affected alpha diversity indices (Table 2). Allium-derived PTSO supplemented fish showed
a reduction in alpha diversity respect to control fish. However, no differences appeared
between gut region, showing both foregut and hindgut similar levels of alpha diversity.
Furthermore, no differences appeared in the interaction of diet and gut region, indicating
that the changes in diversity between both gut regions occurs in the same way in both
feeding diets (see Diet*Gut Region interaction term in Table 2).



Antibiotics 2023, 12, 134 6 of 15

Table 2. General linear mixed models exploring the effects of fish experimental diet (control and
supplemented with Allium-derived PTSO) and gut region in different alpha diversity indices of
bacterial community of juvenile European seabass. D.f. refers to degree of freedom. Significant
p-values are shown in bold.

Alpha Diversity Index Explanatory Variables D.f F p

Diet 1177 83.97 <0.001

Chao1 Index Gut Region 1177 0.02 0.899

Diet*Gut Region 1177 1.52 0.220

Diet 1177 79.90 <0.001

Faith PD Gut Region 1177 0.02 0.903

Diet*Gut Region 1177 0.36 0.547

Diet 1177 95.10 <0.001

OTUs Richness Gut Region 1177 0.21 0.652

Diet*Gut Region 1177 0.55 0.459

Diet 1177 6.51 0.012

Shannon Diversity Index Gut Region 1177 15.23 <0.001

Diet*Gut Region 1177 0.96 0.330

The bacterial community of European seabass juveniles varied significantly between
the two diets, considering both the most abundant bacterial ASVs (weighted UniFrac) and
minority ASVs (unweighted UniFrac) (Table 3, Figure 5). Regarding both gut regions sepa-
rately, significant differences appeared in both regions. In the foregut, differences between
experimental diets were observed among both majority (GLMM, weighted UniFrac, diet as
factor, Pseudo-F1,84 = 18.79, p = 0.001) and minority ASVs (GLMM, unweighted UniFrac,
diet as factor, Pseudo-F1,84 = 4.99, p = 0.001). In the hindgut, results were similar, with
differences in diet with both majority (GLMM, weighted UniFrac, diet as factor, Pseudo-
F1,92 = 13.03, p = 0.001) and minority ASVs (GLMM, unweighted UniFrac, diet as factor,
Pseudo-F1,92 = 4.89, p = 0.001).

Table 3. Permutational ANOVA (PERMANOVA) exploring the effects of diet, gut region, and their
interaction in beta diversity indices of bacterial community of European seabass juveniles fed with
control diet or supplemented with Allium-derived PTSO. D.f. refers to degree of freedom. Significant
p-values are shown in bold.

β-Diversity Distance Matrix Explanatory Variables D.f Pseudo-F p

Diet 1177 31.51 0.001

Weighted UniFrac Gut Region 1177 14.00 0.001

Diet*Gut Region 1177 0.98 0.409

Diet 1177 8.89 0.001

Unweighted UniFrac Gut Region 1177 1.05 0.325

Diet*Gut Region 1177 0.94 0.595
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3. Discussion

In this study, juvenile European seabass supplemented with an Allium-derived organosul-
fur compound, such as propyl propane thiosulfonate (PTSO), produced an increased in body
weight at the end of the feeding trial (89 days). This increase in growth performance was
accompanied by significant changes in bacterial communities and in some bacterial groups in
both foregut and hindgut, as well as a decrease in alpha diversity in PTSO supplemented fish.

The spread of antimicrobial resistance requires an urgent quest in searching for new
alternatives to AGP in aquaculture. However, these new products must ensure animal
welfare. Some compounds have been proposed as good AGP alternatives, such as pro-
biotics, prebiotics, organic acids, and plant extracts [46]. Plant extracts, also known as
phytobiotics, include a wide range of plant-derived products, such as essential oils, herbs,
and oleoresins [17]. Phytobiotics have been proposed as good and safe AGP alternatives,
capable of modulating intestinal microbiota and increasing productive parameters, while
also containing anti-pathogenic and appetite stimulation properties of both terrestrial and
aquatic animals [15,47]. The phytobiotics used in the animal feed come from different plant
species, being the products derived from Allium plants the most widely used, mainly garlic
(Allium sativum) and onion (Allium cepa) [36,48]. Organosulfur compounds are the most
important bioactive compounds derived from Allium, showing antibacterial, antifungal,
antiviral, anti-inflammatory, and antioxidant activities [37–39]. Some of the most Allium-
derived organosulfur compounds used for animal feed include ajoene, allicin, isoalliin,
methiin, propiin, propyl propane thiosulfinate (PTS), and propyl propane thiosulfonate
(PTSO) [30,36]. PTSO addition has shown beneficial effects in different farm animals. In
poultry, different doses of PTSO in broiler chickens improved food digestibility and growth
performance and produced changes in gut microbiota [43,49,50]. Additionally, in laying
hens, PTSO increased the number and the size of eggs laid and produced an increase in
potentially beneficial bacteria in the intestine [27,41]. In pig industry, PTSO has shown
beneficial effects in intestinal microbiota and increased growth performance in piglets and
growing-finishing pigs [24,42]. The use of Allium-derived PTSO in aquaculture has only
been studied in gilthead seabream (Sparus aurata) juveniles, showing potentially beneficial
changes in gut microbiota and producing no changes in growth performance [51]. However,
in the present study, fish supplemented with PTSO additive showed a higher body weight
gain at the end of the experimental trail than control ones, supporting previous positive
results of such kind of supplements in other farm animals.

Despite the few research articles on the use of PTSO in aquaculture, other Allium-
based compounds have been used in aquafeeds in different studies and with different fish
species [30]. Dietary inclusion of onion (Allium cepa) powder produced an increase in body
weight, SGR, and immune parameters of beluga juveniles [31]. Supplementing the diet
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with garlic (Allium sativum) showed an increase in growth performance in Asian seabass
(Lates calcarifer) [52,53]. The use of crude polysaccharides from garlic produced an increase
in body weight and SGR in rainbow trout (Onchorhynchus mykiss) [33]. Other studies using
allicin, a garlic-derived organosulfur compound, showed its benefits as growth promoter,
antimicrobial agent, and feed stimulator [32]. However, the results of different studies are
controversial because other studies noted the lack of effect of Allium extract and Allium-
derived compounds on different fish species in aquaculture [54,55]. In fact, in a previous
study using PTSO in gilthead seabream, the inclusion of this Allium-derived compound
produced no changes in growth performance [51]. Our results with the European seabass
juveniles showed no differences in body weight between control and Allium-derived PTSO
supplemented fish along the experiment, although we found a significant increase in body
weight at the end of the experimental period (after 89 days of treatment). Further studies
are needed to clarify differences between phytobiotic presentation and fish species.

Our study showed a significant decrease in all the alpha diversity indices studied in the
foregut and hindgut of European seabass juveniles supplemented with PTSO, except in the
hindgut with Shannon diversity index. Some studies have shown that reduction in alpha
diversity increased body weight in birds, and obesity in humans [56,57]. In aquaculture,
results relating alpha diversity and body weight are disparate. In a previous study, [58] they
found that differences in bacterial diversity did not translate into differences in body weight
of largemouth bronze gudgeon (Coreius guichenoti). However, a study with rainbow trout
(Onchorhynchus mykiss) suggested a correlation between an increase in body weight and an
increase in bacterial diversity [59]. Previous results from our research group [51] showed no
differences in body weight accompanied by an increase in alpha diversity indices in gilthead
seabream juveniles supplemented with Allium-derived PTSO. Our results with European
seabass showed an opposite trend; an increase in body weight is related with a reduction
in alpha diversity. This negative association between body weight gain and bacterial
diversity has been found in humans [57]. In pigs, the use of an Allium extract similar to the
supplement we provided to our gilt-head breams reduced bacterial alpha diversity and
increased body weight [42]. We cannot discard that the relation between alpha diversity and
body weight could be species-dependent, so standardization in experimental setups, diets,
and products might disentangle this association between body weight and alpha diversity.
Moreover, we have explored the effects of PTSO in juvenile growth. Longitudinal studies
along the productive life of fish would show long-term effects of PTSO supplementation in
growth and microbiota of fish.

Intestinal community differed between the control and Allium-derived PTSO diets,
either when considering majority ASVs (Weighted UniFrac) or minority ASVs (Unweighted
UniFrac). These community differences are in accordance with changes in some of the
majority genera of the intestinal microbiota in supplemented fish with respect to those
of the control fish. The relative abundance of Pseudomonas increased in Allium-derived
PTSO supplemented fish in both foregut and hindgut regions. These results could be
a negative trade-off since, despite the fact that Pseudomonas have been described as an
ubiquitous bacterial genus, some species are emergent opportunistic fish pathogens [60].
P. anguilliseptica is considered a fish pathogen, and it is the main causative agent of winter
disease, an illness associated with several farmed fish, such as seabass, cod, and gilthead
seabream [61]. Other Pseudomonas species such P. aeruginosa, P. putida or P. fluorescens
are considered opportunistic pathogens in aquaculture [62]. However, different strains
of P. fluorescens have shown probiotic properties in fish, improving immune system [63]
or inhibiting the fish pathogenic bacteria Vibrio anguillarum [64]. As with many other
bacteria, the pathogenic or symbiotic trait in some bacteria depends on the species and
the strains. We have also found that the relative abundance of Vibrio in both foregut and
hindgut significantly decreased in the European seabass juveniles supplemented with
Allium-derived PTSO. Vibrio species are ubiquitous in marine environments, and some
species are considered potentially pathogenic, causing clinical diseases as vibriosis [13,65].
V. anguillarum, V. salmonicida, V. alginolyticus, V. harveyi, or V. parahaemolyticus are some
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of the Vibrio species which cause the most devastating effects on marine fish [66]. Some
plant extracts have demonstrated antimicrobial activity against different Vibrio species in
aquaculture. Ginger powder and garlic powder showed antimicrobial effects against V. har-
veyi in Asian seabass [67]. The use of garlic has shown antimicrobial effects against Vibrio
species in aquaculture [30]. A previous study [68] showed in vitro inhibitory activity of
garlic (A. sativum) against V. anguillarum, V. alginolyticus, and V. harveyi. This is also true for
PTSO, which has shown direct inhibition in vitro against Vibrio, Pseudomonas, Enterobacteria,
and several Gram-positive bacteria [37,69]. Among these, Vibrio parahaemolyticus was the
most sensitive strain against PTSO, which may explain the Vibrio reduction observed in this
study. Further research is necessary to explore in detail different Vibrio and Pseudomonas
strains in order to untangle the antagonistic relationships between bacterial species. Future
studies should address the limitations of the current study, including increasing the experi-
mental timeline to adult stage of the seabass and observing how the treatment affects the
morphology of the intestinal mucosa. Peinado and colleagues [49] showed a significant
increase in histometrical parameters of the small intestinal, such as villus height, width,
and surface area in birds fed with 90 mg/kg of PTSO, which could explain the body weight
gain due to an increased nutrient absorption via an increase in surface area.

4. Materials and Methods
4.1. Animals, Experimental Design and Fish Sampling

European seabass (Dicentrarchus labrax) juveniles (n = 780) were randomly assigned to
two experimental groups (390 fish per group), consisting of triplicate tanks (400 L; 130 fish
per tank). Fish were kept in a recirculating RAS D-400 water system equipped with physical
and biological filters. An amount of 5–10% of the water was renewed daily, depending on
the quality of water. The temperature was adjusted at 21 ± 1 ◦C, and a photoperiod regime
of 12L/12D hours was applied. All studied fish were handled in accordance with the
European Union Guidelines (Directive 2010/63/UE) for the use of laboratory animals. The
Ethical Committee at the University of Granada approved the experiments, and they were
endorsed by the regional government (Junta de Andalucía, Spain, ref. no. 13/04/2018/048).

The experimental diet consisted of commercial fishmeal (NUTRAPLUS, Dibaq, Spain)
and the addition of the Allium-based product (150 mg of PTSO/kg of fishmeal) (Supplemen-
tary Table S1). After the meal homogenization, the granulated fish feed was manufactured
by SPAROS I&D Nutrition in Aquaculture (Olhão, Portugal). The same diet without
Allium-based additive was prepared as a control. SPAROS I&D Nutrition in Aquaculture
checked PTSO concentration by UHPLC-ESI-MS/MS analyses, according to the method
described in [70]. The Allium-based product used is commercialized under the trademark
AquaGarlic® and was supplied by DOMCA S.A. (Granada, Spain). This product is stan-
dardized in propyl propane thiosulfonate (PTSO) at a concentration of 10% and presented
as a powder on inert sepiolite.

At the beginning of the experiment, fish were randomly housed in different tanks,
obtaining the same initial biomass in each tank. After 2 weeks of acclimatization, fish
were anesthetized with 80 mg/L of tricaine methanesulfonate (MS-222) and weighed, with
average initial body weight (BW) of 3.78 ± 0.09 g. During the feeding trial (89 days),
fish were fed 3–4 times per day, 6 days per week. All fish from each tank were collected,
anesthetized using MS-222, and weighed on days 0, 12, 26, 42, 63 and 89. At the end of the
feeding trial (89 days, according to the facilities availability and ensuring enough time for
testing the experimental effect of PTSO), 20 fish per experimental tank were euthanized
by an overdose of anesthesia MS-222 (400 mg/L), followed by spine severing. Fish were
immediately dissected and the whole intestine was collected with sterile material. Intestines
were stored in sterile 90 mm Petri dishes and transported to the laboratory, where they
were kept at −80 ◦C until DNA extraction.
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4.2. DNA Extraction

Intestinal pieces of approximately 100 mg were dissected from the foregut and hindgut
of European seabass (D. labrax) juveniles using a sterile scalpel. DNA extraction was carried
out following the modified salting out procedure (MSOP) proposed by [71]. An initial
mechanical lysis step using a cell disrupter FastPrep FP120 (BIO 101, Thermo Savant,
Irvine, CA, USA) was introduced to increase cell lysis. In summary, intestine pieces of
about 100 mg were introduced in a 2 mL microcentrifuge screw cap tube filled with 100 mg
of 2 mm zirconia beads and homogenized by two consecutive pulses of 30 s at speed 5 in
FastPrep FP120. After this previous step, the MSOP protocol was followed. The yield of the
DNA extraction was checked by 0.7% agarose gel electrophoresis. DNA concentration was
measured using NanoDrop™ 2000 Spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA) and then DNA was stored at −20 ◦C until PCR amplification.

4.3. V6-V8 16S rRNA Gene Amplification and High-Throughput Sequencing

V6-V8 region of 16S rRNA gene libraries were constructed using the primer pair B969F
(5′-ACGCGHNRAACCTTACC-3′) and BA1406R (5′-ACGGGCRGTGWGTRCAA-3′) [72]
with Illumina adapter overhang sequences. PCR amplification was carried out using
the iProof™ High-Fidelity DNA Polymerase (Bio-Rad®, Hercules, CA, USA) following
Rabelo-Ruiz et al. [42]. The PCR products were purified and then used as template for
a second PCR. In this second PCR amplification, a unique combination of two Illumina
compatible barcodes were index to each sample. This unique barcoding allow that the
derived sequences can be demultiplexed into their respective samples in downstream
analysis. The barcodes overlapped with the sequence of the primers used in the first
PCR. All PCR amplicon purifications were made using DNA Purification SPRI Magnetic
Beads (Canvax®, Córdoba, Argentina) following the manufacturer’s instructions. PCR
amplicons were checked by 1% agarose gel electrophoresis, and DNA concentrations were
measured using Qubit® 3.0 Fluorometer (Invitrogen™, Carlsbad, CA, USA). Afterwards,
PCR amplicons were pooled in equimolar concentrations, and high-throughput sequencing
was carried out with Nextera XT DNA Library Prep Kit (Illumina, San Diego, CA, USA) in
paired-ends reads of 2 × 300 bp length. Sequencing was carried out in the Illumina MiSeq
platform in the Institute of Parasitology and Biomedicine “López-Neyra” (Granada, Spain).

4.4. Sequences Processing and Data Analysis

16S rRNA reads generated from Illumina MiSeq sequencer were analyzed using the
Quantitative Insights Into Microbial Ecology (QIIME2 v2020.11; [73]) software. At the
beginning, primer trimming was performed using cutadapt plugin [74], and pair joining
was carried out using default parameters. Quality filtering was performed with a threshold
of 20 Phred score. Afterward, Deblur algorithm was used for sequence clustering into ASVs
(Amplicon Sequence Variants) in order to remove sequencing errors [75]. Sequences that
passed quality filters were trimmed to 400 bp, giving a dataset of 10,832,912 total reads
with a mean of 51,098.64 reads per sample. The fragment insertion script implemented
in QIIME2 was used to align the sequences and build a bacterial phylogenetic tree based
on a reference phylogenetic tree (SEPP reference Greengenes 13.8; [76]). The taxonomy
was assigned based on a pretrained classifier on Greengenes 13.08 with a similarity of
99% [77]. Finally, sequences belonging to chloroplast, mitochondria or non-bacterial DNA
were filtered of the ASVs table.

4.5. Statistics

To test the effect of different diets on body weight, we performed generalized linear
mixed models (GLMM). We used mean body weight per tank as experimental unit with
diet as fixed factor.

For alpha and beta diversity analyses, the ASV table was rarified at 10,000 sequencing
depth per sample. Samples that did not reach this sequencing depth were excluded from
subsequent analyses (this was an 11% of the samples, i.e., 22 out of a total of 200 samples).



Antibiotics 2023, 12, 134 11 of 15

Four alpha diversity indices were calculated, i.e., Shannon diversity index [78], chao1
index [79], Faith phylogenetic diversity index [80], and OTU Richness. We used GLMM to
explore the effect of diet and gut region as fixed factors in both alpha diversity indices. In
alpha and beta diversity analysis, fish was used as the experimental unit.

Body weight and alpha diversity analyses were performed using STATISTICA 10.0 (StatSoft).
Differences in genera and classes abundances between control and Allium-derived

PTSO supplemented fish were explored by means of linear discriminant analysis effect size
(LEfSe) [81]. LEfSe analyses were performed on the Galaxy web platform, implemented on
the public server https://huttenhower.sph.harvard.edu/galaxy/ (accessed on 4 July 2022).

Beta diversity distance matrixes were calculated using UniFrac index. Both weighted
and unweighted UniFrac indices [82,83] were used for subsequent analysis. Weighted
UniFrac considers the relative abundance of bacteria shared between samples, giving more
importance to the most abundant bacteria. Unweighted UniFrac gives more importance to
rare bacteria in the ASVs as it only considers their presence or absence irrespective of their
abundance. Permutational ANOVA (PERMANOVA) was performed to test these effects on
both UniFrac distance matrixes using PRIMER-7 software (PRIMER-e), implemented with
PERMANOVA plugin. Principal coordinate analyses (PCoA) were performed in order to
visualize the 2 first axes using EMPeror 2018.2.0 [84,85].

5. Conclusions

The worlds’ food demand and the ban of antibiotics as growth promoters are enhanc-
ing the appearance of new alternatives for animal production and welfare. Phytobiotics
may play an important role as food additives due to their positive effect on growth perfor-
mance and antimicrobial activity against certain pathogens. Although the ultimate cause
has not been elucidated yet, their positive effects in animal production might be associated
with change in the bacterial community composition. Our experimental supplementation
of the diet of European seabass juveniles with Allium-derived PTSO produces a final in-
crease in fish body weight accompanied with changes in bacterial community composition.
Moreover, Allium-derived PTSO induced changes in some bacterial groups, especially a
reduction in Vibrio, a potential pathogen. Our results support the positive association
between diet and performance in fish. However, further research is necessary to study
how this Allium-derived PTSO affects specific pathogenic strains and how this phytobiotic
product affects the immune system and health status of fish.

Supplementary Materials: The following supporting information can be downloaded at: https:
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