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Abstract
High-throughput DNA sequencing technologies, coupled with advanced bioinformat-
ics tools, have enabled rapid advances in microbial ecology and our understanding of
the humanmicrobiome. QIIME (Quantitative Insights Into Microbial Ecology) is an open-
source bioinformatics software package designed for microbial community analysis
based on DNA sequence data, which provides a single analysis framework for analysis
of raw sequence data through publication-quality statistical analyses and interactive
visualizations. In this chapter, we demonstrate the use of the QIIME pipeline to analyze
microbial communities obtained from several sites on the bodies of transgenic and
wild-type mice, as assessed using 16S rRNA gene sequences generated on the Illumina
MiSeq platform. We present our recommended pipeline for performing microbial com-
munity analysis and provide guidelines for making critical choices in the process. We
present examples of some of the types of analyses that are enabled by QIIME and dis-
cuss how other tools, such as phyloseq and R, can be applied to expand upon these
analyses.
1. INTRODUCTION

Advances in DNA sequencing technologies, together with the avail-
ability of culture-independent sequencing methods and software for analyz-

ing the massive quantities of data resulting from these technologies, have

vastly improved our ability to characterize microbial communities in many

diverse environments. The human microbiota, the collection of microbes

living in or on the human body, is of considerable interest: microbial cells

outnumber human cells in our bodies by a ratio of up to 10 to 1 (Savage,

1977). These microbial communities contribute to healthy human

physiology (De Filippo et al., 2010; Dethlefsen & Relman, 2011; Spencer

et al., 2011) and development (Dominguez-Bello et al., 2010; Koenig

et al., 2011), and dysbiosis (or imbalance in these communities) is now

known to be associated with disease, including obesity (Turnbaugh et al.,

2009) and Crohn’s disease (Eckburg & Relman, 2007). More recently, evi-

dence from transplants into germ-free mice suggests that some of these

associations may be causal, because certain phenotypes can be transmitted

by transmitting the microbiota (Carvalho et al., 2012; McLean,

Bergonzelli, Collins, & Bercik, 2012; Turnbaugh et al., 2009),

even including transmission of human phenotypes into mice (Diaz Heijtz

et al., 2011; Koren et al., 2012; Smith et al., 2013).

Illumina’s MiSeq and HiSeq DNA sequencing instruments, respectively,

sequence tens of millions, or billions, of DNA fragments in a single
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sequencing run (Kuczynski et al., 2012). The rapidly increasing data vol-

umes typical of recent studies drive a need for more efficient and scalable

tools to study the human microbiome (Gonzalez & Knight, 2012). QIIME

(Quantitative Insights Into Microbial Ecology) (Caporaso, Kuczynski, et al.,

2010) is an open-source pipeline designed to provide self-contained micro-

bial community analyses, from interacting with raw sequence data through

publication-quality statistical analyses and visualizations.

QIIME integrates commonly used third-party tools and implements

many diversity metrics, statistical methods, and visualization tools for analyz-

ing microbial data. Consequently, most individual steps in the microbial

community analysis can be performed in multiple ways. Here, we describe

how samples are prepared for an Illumina MiSeq run, the QIIME pipeline,

and our view of the current best practices for analyzing microbial commu-

nities with QIIME. Although there are other pipelines available, including

mothur (Schloss et al., 2009), the RDP tools (Olsen, Larsen, & Woese,

1991; Olsen et al., 1992), ARB (Ludwig et al., 2004), VAMPS (Sogin,

Welch, & Huse, 2009), and other platforms, in this review, we focus on

analysis with the MiSeq platform and QIIME as this combination is increas-

ingly popular as a method for analyzing microbial communities and a

detailed comparison of other available pipelines and sequencing platforms

is beyond the scope of the present work.

2. QIIME AS INTEGRATED PIPELINE OF
THIRD-PARTY TOOLS
An early barrier to adoption of QIIME was that it was difficult to

install, in part because of the large number of software dependencies

(third-party packages that need to be installed before QIIME is operational).

The large number of dependencies was, however, a deliberate choice made

during QIIME development. To build a pipeline for sequence analysis that

encompasses the many steps from sequence collection, curation, and statis-

tical analysis, the user must consider many existing tools that have been

developed to perform specific functions and extensively benchmarked on

their ability to perform these functions, such as the uclust program for clus-

tering sequences into Operational Taxonomic Units (OTUs) (Edgar, 2010).

A pipeline thus has two options: either reimplement the algorithm or use the

existing software (by creating a “wrapper” that allows its input and output to

be incorporated into the pipeline). The QIIME developers choose to wrap

all the algorithms rather than reimplement them. This choice preserves the
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integrity of the programs that make up the pipeline, as there is no doubt that

the tool being used is the one designed, created, and tested by the original

authors, and, in most cases, peer-reviewed by the scientific community. The

reuse of existing software also allows the QIIME pipeline to include and dis-

tribute newly developed and improved algorithms more rapidly than would

be possible if each algorithm had to be reimplemented and retested to check

that it matched the original. Thus QIIME users can be sure that they have

the most up-to-date tools for their analysis and can credit the authors of the

component software packages appropriately.

One important, but sometimes poorly understood, aspect of the QIIME

pipeline is that itwraps algorithms and tools produced byother researchers into

a single pipeline for sequence analysis. It is therefore important to cite the indi-

vidual tools that you use as well as QIIME itself. For example, an analysis using

the default QIIME parameters (Caporaso, Kuczynski, et al., 2010) would use

uclust (Edgar, 2010) to cluster the sequences against the GreenGenes database

(DeSantis et al., 2006), assign taxonomy using the RDP classifier (Wang,

Garrity, Tiedje, & Cole, 2007), and build principal coordinate analysis

(PCoA) beta-diversity plots using UniFrac (Lozupone & Knight, 2005). It

is important for researchers who are considering contributing to the QIIME

pipeline to recognize that their contributions will be cited so that they can

continue to expand upon their work. For example, the pick_otus.py

script alone offers a choice of nine different clustering algorithms, each devel-

oped by researchers who should be acknowledged if their particular

algorithm is used.

For taxonomy databases and other reference databases, including

GreenGenes, it is also important to cite the release version that you are using

(DeSantis et al., 2006), not least because the results will change depending

on which release you used, and others may not be able to reproduce your

results without this information. For GreenGenes, the default taxonomy

database in QIIME, the version is named after the release date, such as the

12_10 release. The latest version of GreenGenes can always be downloaded

from the qiime.orgWeb site.Using the sameGreenGenes, reference database

version is critical for comparisons of taxonomy assignments andOTUs across

different studies. For this reason, all the studies in the QIIME database are

always processed against the same release version of GreenGenes.

An overview of some of the key tools used by the default QIIME

pipeline follows:

• uclust (Edgar, 2010). Used for OTU picking.

• usearch (Edgar, 2010). Used for OTU picking and chimera checking.
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• RDP classifier (Wang et al., 2007). Used for taxonomy assignment.

• GreenGenes database (DeSantis et al., 2006). Used as a reference database

for taxonomy assignment and reference-basedOTUpicking (see below).

• PyNAST (Caporaso, Bittinger, et al., 2010). Used for multiple sequence

alignment.

• UniFrac (Lozupone & Knight, 2005). Used as a phylogenetic metric for

beta-diversity analysis.

3. PCR AND SEQUENCING ON ILLUMINA MiSeq

Microbial community analysis typically begins with the extraction of
DNA from primary samples (note that although most of this DNA comes

from cells in the sample, some may consist of dead cells or extracellular

DNA, so the representation of the active community from these sources

is not perfect). Although methods for DNA extraction vary, several large

initiatives such as the Earth Microbiome Project (Gilbert, Meyer,

Antonopoulos, et al., 2010; Gilbert, Meyer, Jansson, et al., 2010) and the

Human Microbiome Project (HMP) (Human Microbiome Project,

2012a, 2012b; Turnbaugh et al., 2007) have standardized on the MOBIO

PowerSoil DNA extraction kit (www.mobio.com) to efficiently recover

DNA from a wide range of sample types. After extraction, samples are

PCR amplified under permissive conditions with primers containing the

MiSeq sequencing adapters, a 12-nucleotide Golay barcode (first

introduced in Fierer, Hamady, Lauber, & Knight, 2008) on the forward

primer, followed by the bases matching the 16S rRNA gene; the reverse

primer is not barcoded (Caporaso et al., 2012). The annealing temperature

is set to 50 �C, which in our hands minimizes PCR artifacts (both primer

dimer and background “smear”) while encouraging the primers to anneal

to the largest diversity of sequences possible. Similarly, we believe that

including sequencing adaptors and barcodes in the PCR step has advantages

over multiple enzymatic treatments of the 16S amplicon that are otherwise

needed to introduce adaptors and barcodes after PCR. The first and most

important consideration is the reduction of sample handling, which lowers

the chance of contamination, mislabeling, and loss of small-volume samples

during preparation. Combining the adapters and barcodes in the PCR step

allows for exact well-to-well mapping of samples to primers, providing a

standardized way to track sample-barcode combinations through library

preparation, an important consideration when sequencing hundreds to

thousands of samples using 96- or 384-well sample preparation formats.

http://www.mobio.com
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Because the MiSeq can generate a large number of sequences per run,

many samples can bemultiplexed on each single sequencing run. The choice

of barcodes thus deserves some attention. For instance, homebrew

“barcodes” can be as simple as using an arbitrary sequence of known nucle-

otides placed at the front of the amplicon and fed into an informatics pipeline

for detection. Although simple, this approach has limited ability to detect

sequencing error (Caporaso et al., 2012) and increases the risk of mis-

assignment of a sequence to the wrong sample. The use of error-correcting

barcodes, such as Hamming (Hamady, Walker, Harris, Gold, & Knight,

2008) or Golay codes (Caporaso et al., 2012), allows the user to detect

and correct errors in the barcode, decreasing the chances that a sequence

is assigned to the wrong sample. Error-correcting barcodes also allow the

user to retain more sequences because 8-nucleotide Hamming codes can

detect and correct 2 and 1 bit errors, respectively (Hamady et al., 2008),

and 12-nucleotide Golay codes can detect and correct 4 and 3 bit errors,

respectively (Hamady & Knight, 2009). With the unique Golay codes

described in Caporaso et al. (2012), up to 2167 samples could bemultiplexed

on a single MiSeq run at a depth of 4600 per sample, certainly sufficient to

detect the effects of many biological phenomena of interest (Kuczynski,

Costello, et al., 2010; Kuczynski, Liu, et al., 2010). As the QIIME default

settings detect Golay barcodes, we encourage the use of these codes when

possible to maximize sequence retention and assignment accuracy.

Detailed instructions for loading the MiSeq for amplicon runs with cus-

tom barcodes can be found on the Earth Microbiome Project Web site

(www.earthmicrobiome.org). Briefly, pooled libraries are analyzed by

Bioanalyzer (Agilent Technologies) and diluted to 2 ZM quantitated by

use of a Qubit Fluorometer (Life Technologies, high-sensitivity reagents).

The phiX spike-in library (Illumina Inc.) is also diluted to 2 ZM prior to

use. Denaturation of the pooled 16S rRNA gene amplicon libraries and

the phiX control is performed according to manufacturer’s instructions

(Illumina Inc.), giving a denatured template concentration of 20 rM. Dena-

tured templates are further diluted to 5 rM (using Illumina HT1 buffer) and

subsequently combined to give an 85% 16S rRNA gene amplicon library

and 15% phiX control pool (1000 mL total volume). Improvements in the

Illumina analysis software may allow reduction of this phiX spike-in, allow-

ing more of the sequences to be used for 16S rRNA gene amplicons.

MiSeq reagent cartridges are prepared according to the manufacturer’s

instructions (Illumina Inc.). The sample pool (1000 mL total volume) is

loaded into cartridge position 17. Custom 16S rRNA gene Read 1, Index

http://www.earthmicrobiome.org
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Read, and Read 2 sequencing primers are added directly to cartridge wells

containing the standard Illumina Read 1, Index Read, and Read 2 sequenc-

ing primers (wells 12, 13, and 14, respectively, 5 mL each primer at 100 mM
concentration (Caporaso et al., 2012)). Primers are added to wells using a

long gel loading tip and gently mixed using a plastic Pasteur pipette. Care

must be taken to assure that reagents in the cartridge are localized to the bot-

tom of the wells and that no bubbles are present.

The spike-in of PhiX, at least at low levels, is still critical for obtaining

usable amplicon data because the optics requires diversity at each nucleotide

position, which is not possible with absolutely conserved nucleotides within

the 16S rRNA gene (or most other genes of interest). Many users have had

difficulty mixing this protocol for custom amplicons with Illumina’s own

indexing protocol, which allows a maximum of 96 samples to be multi-

plexed per run at the time of writing. It is critical to use either this protocol

exactly (allowing arbitrary numbers of custom barcodes) or Illumina’s

barcoding protocol, but not to mix and match steps and reagents.

4. QIIME WORKFLOW FOR CONDUCTING MICROBIAL
COMMUNITY ANALYSIS
The Illumina MiSeq technology can generate up to 107 sequences in a

single run (Kuczynski et al., 2012). QIIME takes the instrument output and

generates useful information about the community represented in each sam-

ple. At a coarse-grained level, we divide this process into “upstream” and

“downstream” stages (Fig. 19.1). The upstream step includes all the

processing of the raw data (sequencing output) and generating the key files

(OTU table and phylogenetic tree) for microbial analysis. The downstream

step uses the OTU table and phylogenetic tree generated in the upstream

step to perform diversity analysis, statistics, and interactive visualizations

of the data. Additionally, QIIME increasingly interfaces with other packages

such as IPython and R, allowing additional analyses to be conducted.

To illustrate some of the main features of QIIME, together with some of

the analyses that can be performed outside QIIME, we use an example

dataset consisting of samples from different body sites of 12 mice: the oral

cavity, ileum, cecum, colon, fecal pellet, skin, and whole mouse sample

by homogenizing the mouse carcass. Seven mice were wild-type genotype

(WT from here so on), while the five remaining mice were transgenic (TG

from here so on). The samples were collected by students during the IQ-Bio

course taught by Manuel Lladser and Rob Knight during Spring 2013 at
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University of Colorado at Boulder (course identifiers: APPM5720-001-

2013, CHEM4751-001-2013, CHEM5751-001-2013, CSCI4830-006-

2013, CSCI7000-006-2013, MCDB6440-001-2013).

4.1. Upstream analysis steps
The QIIME analysis workflow starts with the sequencing output (fastq

files) and a user-generated mapping file. The mapping file contains infor-

mation for understanding what is in each sample and is therefore critical for

performing the rest of the analyses; it is in tab-delimited text format. The

main information in this file is a unique identifier for each sample, the

barcode used for each sample, the primer sequence used, and a description

for each sample, together with additional user-defined information that is

necessary for understanding the results such as which species the sample was

taken from, which site on the body is being studied, and clinical variables

relevant to the study. The sample identifier, barcode, and primer sequence

information are required for the first step of the QIIME workflow. This

preprocessing step combines sample demultiplexing, primer removal,

and quality-filtering. Additional information provided about the samples

in the mapping file is helpful for later steps, especially for analyses that

aggregate the samples by these fields (e.g., comparing lean to obese sub-

jects). We therefore recommend including as much additional data about

the samples as possible (often called “sample metadata”). This auxiliary

information is also very useful for identifying contaminated samples. For

example, SourceTracker (Knights, Kuczynski, Charlson, et al., 2011) is a

package included in QIIME that identifies the proportion of different

community sources, including contamination, in each sample based on a

database of samples from known communities.

4.1.1 Demultiplexing and quality-filtering
As mentioned earlier, high-throughput sequencing allows multiple samples

to be combined in a single sequencing run (Kuczynski et al., 2012). How-

ever, each sequence must then be linked back to the individual sample that it

came from via a DNA barcode. The barcodes, which are short-DNA

sequences unique to each sample, are incorporated into each sequence from

a given sample during PCR. QIIME uses the barcodes in the mapping file to

demultiplex, that is, to assign the sequences back to the samples they are

derived from, using error-correcting codes where available (as noted earlier).

QIIME is also able to demultiplex variable-length barcodes such as those

used in the HMP, see Section 5.2.1.
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During demultiplexing, QIIME removes the barcodes and primer

sequences because they are not needed in later steps. Thus, the result after

demultiplexing is a sequence matching the amplified 16S rRNA gene.

The third part of preprocessing is quality-filtering. Quality-filtering

improves diversity estimates with Illumina sequencing substantially

(Bokulich et al., 2013). Illumina instruments, like most sequencing instru-

ments, generate a quality score for each nucleotide (Phred), related to the

probability that each nucleotide was read incorrectly. QIIME uses the Phred

score and user-defined parameters to remove sequence reads that do not

meet the desired quality. These user-defined parameters are the percentage

of consecutive high-quality base calls (p), the maximum number of consec-

utive low-quality base calls (r), the maximum number of ambiguous bases

(typically coded as N) (n), and the minimum Phred quality score (q). For

a detailed discussion of how these parameters affect diversity results, see

Bokulich et al. (2013). This study recommends standard values for these

parameters as r¼3, p¼75%, q¼3, and n¼0, which are the default values

in the QIIME pipeline. However, the optimal values for these parameters

can vary both for individual sequencing runs and for different downstream

analyses, for example, analyses such as machine-learning benefit from larger

numbers of low-quality sequences, whereas accurate counts of OTUs from a

mock community require fewer, higher-quality sequences. Table 19.1 con-

tains an overview of the guidelines presented in Bokulich et al. (2013) for

tuning these parameters to a given dataset.
Table 19.1 Overview of the guidelines to tune up the quality-filtering parameters
Dataset characteristics q p r Results

Majority of high-quality,

full-length sequences

Increase Increase – Retrieving full-length

sequences with low error

rates, increasing the

discovery rate of rare

OTUs

Short reads or reads

truncated by early low-

quality base calls

– Lower Increase Retain lower quality but

taxonomic useful reads

Maximize read count for

machine-learning tools,

cross-metadata OTU

counts comparison, etc.

– Lower – Increased sample size

Adapted from Bokulich et al. (2013).
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The Illumina quality-filtering approach differs in its fundamental

principles from 454 denoising (Quince et al., 2009; Reeder & Knight,

2010). 454 denoising is based on flowgram clustering (Quince et al.,

2009; Quince, Lanzen, Davenport, & Turnbaugh, 2011) and is primarily

targeted at reducing homopolymer runs, which are not a problem on the

Illumina platform to the same extent. In contrast, the Illumina quality-

filtering is based on a per-base Phred quality score and does not target

indels.

The QIIME quality-filtering process works as follows. Starting at the

beginning of the sequence, QIIME checks that the next r Phred values

exceed the user-defined quality threshold q. If the test is positive, it continues

slicing the window of r bases until the test fails, or the end of the sequence is

reached. The sequence is then trimmed to the last base that met the quality

threshold. The next test determines whether the length of the trimmed

sequence exceeds p, expressed as the percentage of length of the raw

sequence. If this check fails, the sequence is excluded. Otherwise, QIIME

performs the last check on the sequence, which counts the number of

ambiguous characters (N) in the trimmed sequence and checks that it is less

than n. If the test fails, the sequence is rejected. QIIME combines the

demultiplexing, primer removal, and quality-filtering processes in a single

script, split_libraries_fastq.py:

split_libraries_fastq.py -i $PWD/IQ_Bio_16sV4_L001_sequences.fastq.

gz -b $PWD/IQ_Bio_16sV4_L001_sequences_barcodes.fastq.gz -m $PWD/

IQ_Bio_16sV4_L001_map.txt -o $PWD/slout --rev_comp_mapping_barcodes

In our example dataset, we used the --rev_comp_mapping_barcodes

option in order to indicate that the barcodes present in the mapping file

are reverse complements of Golay 12 barcodes. We used the recommended

default parameters for quality-filtering on this dataset. However, to change

the values for the r, p, n, and q quality-filtering parameters, we can use the

-r, -p, -n, and -q options to the script. This command will write a fasta-

formatted file in the slout folder, called seqs.fna, which contains the

demultiplexed sequences that pass the quality filter. Each sequence

contains the information about which sample it came from encoded in

the name of the sequence.

Multiple lanes of Illumina fastq data can be processed together in a single

call to the script, just by passing the sequence files, the barcode files, and the

mapping files in the same order to the -i, -b, and -m options, respectively.

For example, with two lanes, the command would look like:
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split_libraries_fastq.py -i sequences1.fastq,sequences2.fastq

-b sequences1_barcodes.fastq,sequences2_barcodes.fastq

-m mapping1.txt,mapping2.txt -o slout

The user can check how many sequences have been demultiplexed and

passed quality-filtering by using the count_seqs.py command. This com-

mand also shows the mean and standard deviation of the sequence length:

count_seqs.py -i $PWD/slout/seqs.fna

12687021: slout/seqs.fna (Sequence lengths (mean þ/- std): 150.9989

þ/- 0.1715)

12687021: Total
4.1.2 OTU picking
The next step is clustering the preprocessed sequences into OTUs, which in

traditional taxonomy represent groups of organisms defined by intrinsic phe-

notypic similarity that constitute candidate taxa (Sneath & Sokal, 1973;

Sokal & Sneath, 1963). For DNA sequence data, these clusters, and hence

the OTUs, are formed based on sequence identity. In other words,

sequences are clustered together if they are more similar than a user-defined

identity threshold, presented as a percentage (s). This level of threshold is

traditionally set at 97% of sequence similarity, conventionally assumed to

represent bacterial species (Drancourt et al., 2000); other levels approxi-

mately represent other taxa, although the fit between molecular data and tra-

ditional taxonomy varies for different taxa. QIIME supports three

approaches for OTU picking (de novo, closed-reference, and open-

reference) and multiple algorithms for each of these approaches

(Table 19.2). The de novo approach (Fig. 19.2A) groups sequences based

on sequence identity. The closed-reference approach (Fig. 19.2B) matches

sequences to an existing database of reference sequences. If a sequence fails to

match the database, it is discarded. The open-reference approach

(Fig. 19.2C) also starts with an existing database and tries to match the

sequences against them. However, if a sequence does not match the data-

base, it is added to the database as a new reference sequence.

The OTU picking strategies shown in Fig. 19.2 are built on top of algo-

rithms for de novo clustering. Of the various algorithms available, the

furthest-neighbor, average-neighbor, or nearest-neighbor in mothur

(Schloss & Handelsman, 2005; Schloss et al., 2009) (also named complete

linkage, average linkage, and single linkage, respectively) are the most



Table 19.2 Supported OTU picking methods in QIIME with a brief description of the
algorithm employed and in which OTU picking approach can be used

Picking approach

Method
De
novo

Closed-
reference

Open-
reference Description References

cd-hit Yes – – Applies a “longest-

sequence-first list

removal algorithm” to

cluster sequences

Li and Godzik

(2006) and Li,

Jaroszewski, and

Godzik (2001)

Mothur Yes – – Takes an aligned set of

sequences and clusters

them using a nearest-

neighbor, furthest-

neighbor, or average-

neighbor algorithm

Schloss et al.

(2009)

Prefix/

suffix

Yes – – Clusters sequences

which are identical in

their first and/or last

bases

QIIME team,

unpublished

Trie Yes – – Clusters sequences

which are identical

sequences and sequences

which are subsequences

of other sequences

QIIME team,

unpublished

blast – Yes – Compares and clusters

each sequence against a

reference database of

sequences

Altschul et al.

(1990)

uclust Yes Yes Yes Creates seed sequences

which generate clusters

based on percent

identity

Edgar (2010)

usearch Yes Yes Yes Creates seed sequences

which generate clusters

based on percent

identity, filters low-

abundance clusters, and

performs de novo and

reference-based chimera

detection

Edgar (2010)
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Figure 19.2 Cartoon representation of the OTU picking approaches. (A) De novo,
(B) closed-reference, and (C) open-reference OTU picking, respectively. In the de novo
method, sequences are compared to each other and then clusters are formed. In the
closed-reference method, sequences are compared directly to a reference dataset
(e.g., GreenGenes). Sequences that match a reference sequence are clustered; the
remaining sequences are discarded. In both OTU picking methods, once clusters are
formed, a representative sequence is selected and then taxonomy is assigned to that
sequence (and applied to the rest of the sequences that make up the OTU). Open-
reference combines the closed-reference and open-reference methods. The first step
is identical to closed-reference, sequences discarded in the first step are clustered into
OTUs by the de novo method, and both OTU tables are merged into a single final OTU
table.De novo and open-reference cluster all the sequences, but closed-reference allows
better comparisons between studies, especially those using different primers, because
all OTUs occur in a common reference space.
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Figure 19.3 Cartoon demonstrating different clustering algorithms. Circles rep-
resenting sequences linked with lines are within the distance threshold. The two num-
bered sequences are the first and second sequences in order in the file. The reference
algorithms only consider the distance between reference (R) and sequences.
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widely used. Furthest-neighbor requires that each sequence is closer than the

distance threshold to every other sequence already in the OTU (Fig. 19.3).

Average-neighbor requires that the average pairwise distance of all

sequences in the OTU is closer than the distance threshold. Nearest-

neighbor requires that each sequence is closer than the distance threshold

to any sequence already in the OTU. Because these three algorithms are var-

iants on hierarchical clustering, they require loading the distance matrix

(proportional to the square of the number of dereplicated sequences) into

memory and are therefore challenging to apply to large datasets (e.g., larger

than 105 sequences). The OTUs yield by these three algorithms also change

their memberships at different sequencing depths (i.e., the number of

sequences chosen for clustering), which can be a problem for estimates of

total OTU numbers (Roesch et al., 2007).

A solution to the distance matrix problem comes from uclust and

usearch, which are greedy algorithms based on using a single centroid in

each OTU (Edgar, 2010). The centroid could be either from a reference

database (usearch) or identified de novo from the sequence dataset (both

uclust and usearch) (Fig. 19.3). Sequences are serially compared to centroids

in a user-defined order (usually decreasing abundance). If a sequence falls

within the distance threshold of more than one centroid, the new sequence
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can be grouped with either the first centroid encountered or the one with

the closest distance. Both uclust and usearch are much more efficient than

the hierarchical methods, and they do not need to load a large distance

matrix into memory (although recent versions of mothur also avoid the

constraint of loading the full distance matrix). Usearch is the default de novo

OTU picking method in QIIME. Note that it is essential to note both

your OTU picking strategy, and, if de novo OTU picking is used, which

algorithm you used to do it: it is not sufficient simply to state that you used

a 97% threshold.

Because the OTU picking approach selection is a critical point in micro-

bial community analysis, the QIIME team has produced a detailed docu-

ment that describes the OTU picking protocols, their advantages, and

limitations (https://github.com/qiime/qiime/blob/master/doc/tutorials/

otu_picking.rst). Table 19.3 compares the different OTU picking

approaches and gives guidelines for choosing an appropriate OTU picking

strategy.

The recommended OTU picking approach is open-reference OTU

picking, because this approach provides the best trade-off between the time

taken to complete the analysis and the ability to discover novel diversity.

Once the sequences have been clustered into OTUs, a representative

sequence is picked for eachOTU. The entire cluster will thus be represented

by a single sequence, speeding up subsequent steps (because redundant

sequences need not be considered). QIIME allows the representative

sequence to be selected using several techniques: choosing a sequence at ran-

dom, choosing the longest sequence, and the most-abundant sequence or

the first sequence. If using uclust or usearch (Edgar, 2010), the cluster seed

will be used as the representative sequence. The default behavior in QIIME

is to use the most abundant sequence in each OTU as the representative

sequence, because these sequences are least likely to represent sequencing

errors (for other applications, such as clustering with near-full-length Sanger

sequences, it may be more desirable to pick the longest sequence instead).

In case of closed-reference OTU picking, sequences from the reference

collection should be used as the representative sequences, which is the

default behavior when the closed-reference approach is selected.

4.1.3 Identify chimeric sequences
During the PCR amplification process, some of the amplified sequences can

be produced from multiple parent sequences, generating sequences known

as chimeras. Although these sequences are technical artifacts rather than

https://github.com/qiime/qiime/blob/master/doc/tutorials/otu_picking.rst
https://github.com/qiime/qiime/blob/master/doc/tutorials/otu_picking.rst


Table 19.3 OTU picking approaches comparison
De novo Closed-reference Open-reference

Must

use if

There is no reference sequence

collection to cluster against (e.g.,

infrequently used marker gene)

Comparing nonoverlapping amplicons.

The reference set of sequences must span

both of the regions being sequenced

–

Cannot

use if

Comparing nonoverlapping

amplicons (e.g., V2 and V4

regions of 16S rRNA)

There is no reference sequence collection

to cluster against (e.g., infrequently used

marker gene)

Comparing nonoverlapping amplicons

(e.g., V2 and V4 regions of 16S rRNA)

There is no reference sequence collection

to cluster against (e.g., infrequently used

marker gene)

Pros All reads are clustered Fast, as it is fully parallelizable (useful for

extremely large datasets)

Better tree and taxonomy quality since the

OTUs are already defined on the reference

set

All reads are clustered.

Fast, as is partially run on parallel

Cons Time consuming since it runs in

serial

Inability to detect novel diversity with

respect to the reference set because the

reads that do not hit the reference sequence

collection are discarded, so the analysis

focus on the “already known” diversity

If the studied environment is not well

characterized, a large fraction of the reads

can be thrown away

There are still some steps performed in

serial. If the data set contains a lot of novel

diversity with respect to the reference set,

this can still be slow

The table shows when each of the OTU picking approaches should be used and when they cannot be applied. It briefly describes the advantages and disadvantages of
using each of the OTU picking approaches.

Author's personal copy
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representing actual members of the community, chimeric sequences are

important for alpha-diversity estimates (although they are less important

for cross-sample comparisons, because each chimera is relatively rare and

the same chimera is unlikely to be generated systematically in different sam-

ples; Ley et al., 2008). However, the same chimera can sometimes be gen-

erated in multiple PCR reactions, for example, Haas et al. (2011) reported

that chimeric sequences formed from Streptococcus and Staphylococcus

occurred multiple times independently, so the presence of the same

sequence in multiple PCRs does not mean that it is not chimeric.

QIIME currently supports three different methods for detecting chi-

meras: blast fragments, a taxonomy-assignment-based approach using

BLAST (Altschul, Gish, Miller, Myers, & Lipman, 1990); ChimeraSlayer

(Haas et al., 2011), which uses BLAST to identify potential chimera parents;

and usearch 6.1 (Edgar, 2010), which can perform de novo chimera detection

based on abundances as well as reference-based chimera detection. The rec-

ommended method for identifying chimeric sequences is uchime (Edgar,

Haas, Clemente, Quince, & Knight, 2011), which is integrated in the

usearch 6.1 (Edgar, 2010) pipeline. Uchime is the fastest method for

detecting chimeric sequences, and it is executed by default if the usearch

method is selected for picking OTUs.

4.1.4 Taxonomy assignment
The next step in the QIIME workflow is to assign the taxonomy to each

sequence of the representative set. This step connects the OTUs to named

organism, which is useful for inferring likely functional roles for members of

the community.When using a closed-reference approach for OTU picking,

the taxonomy of the sequences can be pulled out from the reference set. In

case of the open-reference and de novo approaches, because the clusters are

not created from any reference database (as a reminder, in the open-

reference approach, sequences that fail to cluster to the reference database

form new clusters), the taxonomy should be assigned using a reference

dataset. We recommend the GreenGenes database (DeSantis et al., 2006;

McDonald, Price, et al., 2012) as the default reference data set for assigning

taxonomy, although the RDP (Cole et al., 2009) and Silva (Quast et al.,

2013) databases also have strengths and weaknesses relative to GreenGenes

and should be considered for some analyses. Silva includes microbial eukary-

otes and has invested substantial effort in cleaning up marine taxa; RDP has

close links to formally recognized names in taxonomy, which can be espe-

cially useful for medical microbiology. QIIME can assign taxonomy against
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any of the given databases, or against a custom database, using several

methods: BLAST (Altschul et al., 1990), RDP classifier (Wang et al.,

2007), rtax (Soergel, Dey, Knight, & Brenner, 2012), mothur (Schloss

et al., 2009), and tax2tree (McDonald, Price, et al., 2012). The QIIME team

recommends the RDP classifier method (Wang et al., 2007) with a confi-

dence value of 0.8. However, if the user has paired-end reads, the best

method to use is the rtax (Soergel et al., 2012), and the user should provide

the fasta files with both the first and the second reads from the paired-end

sequencing. Note that the taxonomy assignment method and the reference

database must both be described in order for an analysis to be reproducible,

and that these methods can have a larger effect on taxonomy than the under-

lying biological sample, so it is important to be consistent (Liu, DeSantis,

Andersen, & Knight, 2008).

4.1.5 Sequence alignment
The next step in the QIIME workflow is to align the sequences. The

sequences must be aligned to infer a phylogenetic tree, which is used for

diversity analyses and to understand the relationships among the sequences

in the sample. Currently, QIIME supports the following methods for

performing sequence alignment: PyNAST (Caporaso, Bittinger, et al.,

2010), Infernal (Nawrocki, Kolbe, & Eddy, 2009), clustalw (Larkin et al.,

2007), muscle (Edgar, 2004), and mafft (Katoh, Misawa, Kuma, &

Miyata, 2002). The recommended (and default) method is PyNAST

(Caporaso, Bittinger, et al., 2010). This method aligns the sequences against

a template sequence alignment, for which we recommend the GreenGenes

core set (DeSantis et al., 2006).

When sequences do not align well using PyNAST, the Infernal package

(Nawrocki et al., 2009) should be used. Like PyNAST, it requires a template

alignment, but unlike PyNAST, it uses stochastic context-free grammars to

align incorporating secondary structure. Although this method is slow com-

pared to other methods, it does takes advantage of RNA secondary structure

(provided in a Stockholm-format file) and can be useful for aligning more

variable rRNAs. For marker genes other than rRNA genes, the best strategy

for building phylogenetic trees is to align the protein sequences (if available)

using muscle.

4.1.6 Phylogeny construction
This step in the QIIME workflow infers a phylogenetic tree from the mul-

tiple sequence alignment generated by the previous step. The phylogenetic
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tree represents the relationships among sequences in terms of the amount of

sequence evolution from a common ancestor. This phylogenetic tree is used

in many downstream analyses, such as the UniFrac metric (Lozupone et al.,

2005) for beta-diversity.

The current methods supported for inferring the phylogenetic tree in

QIIME are FastTree (Price, Dehal, & Arkin, 2009), clearcut (Evans,

Sheneman, & Foster, 2006), clustalw (Larkin et al., 2007), raxml

(Stamatakis, Ludwig, &Meier, 2005), andmuscle (Edgar, 2004). The default

and recommended method in QIIME is the FastTree (Price et al., 2009)

method because it shows the best trade-off between run time and reliability

of the inferred tree.
4.1.7 Make OTU table
The last part of the upstream stage in QIIME is to construct the OTU table.

The OTU table is a sample by observation matrix that also includes the tax-

onomic prediction for each OTU. For the OTU table representation,

QIIME uses the Genomics Standards Consortium candidate standard

Biological Observation Matrix (BIOM) format (McDonald, Clemente,

et al., 2012). The OTU table, the mapping file, and the phylogenetic tree

are the main files for performing the downstream analysis.

QIIME can perform all the steps for generating the OTU table and the

phylogenetic tree from the preprocessed data in a single command. There is

a separate command for eachOTU picking approach. In the following com-

mands, we assume that the GreenGenes reference files (DeSantis et al., 2006)

are located in the current directory. As a remainder, our seqs.fna has

12.687.021 sequences of length 150.9989�0.1715:

• For de novo (run time �80 h on 1 processor (not parallelizable)):
pick_de_novo_otus.py -i $PWD/slout/seqs.fna -o $PWD/denovo_otus
• For closed-reference (run time �2 h on 20 processors):
pick_closed_reference_otus.py -i $PWD/slout/seqs.fna -o $PWD/

closed_ref_otus -r $PWD/gg_12_10_otus/rep_set/97_otus.fasta -t

$PWD/gg_12_10_otus/taxonomy/97_otu_taxonomy.txt -a -O 20
• For open-reference (run time �27 h on 20 processors):
pick_open_reference_otus.py -o $PWD/open_ref_otus -i $PWD/slout/

seqs.fna -r $PWD/gg_12_10_otus/rep_set/97_otus.fasta -a -O 20
Because the closed-reference and open-reference OTU picking approaches

can be run in parallel, we use the -a and -O 20 options in order to run them

using 20 processors.
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4.2. Downstream analysis steps
Once we have generated the OTU table and the phylogenetic tree, we can

start the downstream analysis. At this point, we strongly recommend per-

forming a second level of quality-filtering based on OTU abundance.

The recommended procedure is to discard those OTUs with a number

of sequences <0.005% of the total number of sequences (see Bokulich

et al., 2013 for a detailed description of the effect of this parameter in further

downstream analyses). QIIME executes the OTU abundance quality-

filtering step through the script filter_otus_from_otu_table.py:

filter_otus_from_otu_table.py -i $PWD/open_ref_otus/

otu_table_mc2_w_tax_no_pynast_failures.biom -o $PWD/

open_ref_otus/otu_table_filtered.biom --min_count_fraction 0.00005

This step greatly reduces the problem of spurious OTUs, most of which

are present at very low abundance.

QIIME 1.7.0 allows a first-pass view of common diversity analyses using

a single command: core_diversity_analysis.py. One of the parameters

required by this command is the sampling depth, the number of sequences

that should be included in each sample for diversity analyses. This is

required, because many of the commonly used diversity metrics are very

sensitive to the number of sequences obtained per sample, such that samples

that are similar in the number of sequences that were obtained appear similar

to one another. This is bad because the number of sequences per sample is

typically a methodological artifact, not reflective of biological reality. The

sampling depth defines the size of the random subset of sequences that will

be selected for each sample for all subsequent diversity analyses.

The optimal sampling depth is data dependent. There is no universal way

of choosing a rarefaction level, although heuristics can be applied. For exam-

ple, if most samples have more than 10,000 sequences and the rest range

from 500 to 50 sequences per sample, it would be recommended to use

10,000 as the rarefaction level. Although many studies show marked varia-

tion in sequence depth with only a few “bad” samples, it is not always easy to

choose the rarefaction level. We strongly recommend rarefying over 1000

sequences per sample for Illumina MiSeq, because samples below this level

often suffer from other quality issues as well.

The information needed to choose the rarefaction level can be obtained

from the script print_biom_table_summary.py, which shows summary infor-

mation on the OTU table such as the number of sequences, the number of
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OTUs, the number of samples, and the number of counts per sample,

among others:

print_biom_table_summary.py -i $PWD/open_ref_otus/otu_table_filtered.

biom

Num samples: 90

Num observations: 783

Total count: 10637688.0

Table density (fraction of non-zero values): 0.4289

Table md5 (unzipped): eb0f1d7fbb50bc31695dade31db1e198

Counts/sample summary:

Min: 1.0

Max: 493427.0

Median: 99111.0

Mean: 118196.533333

Std. dev.: 94277.5956531

Sample Metadata Categories: None provided

Observation Metadata Categories: taxonomy

Counts/sample detail:

BLANK4.732555: 1.0

BLANK5.732537: 1.0

Joshua.Jose.WTAbd.732533: 1.0

Nick.Krishna.TG.Fec.732513: 2.0

TH.CVA.WT.Oral.732491: 2.0

BLANK2.732552: 3.0

BLANK3.732479: 5.0

BLANK6.732470: 7.0

Elizabeth.Chris.WT.Abd.732490: 10.0

Uri.Jake.TGAbd.732468: 10.0

TH.CVA.WT.Abd.732477: 13.0

BLANK10.732524: 812.0

Elizabeth.Chris.WT.Oral.732520: 7410.0

Elizabeth.Chris.WT.Col.732481: 21746.0

Jordan.Lisette.TG.Ile.732463: 27149.0

. . .

TH.CVA.WT.Fec.732553: 372327.0

Wang.TG.Cec.732527: 396391.0

TH.CVA.WT.Ile.732517: 493427.0
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In the above output, we can see the information contained in the

OTU table resulting from applying the open-reference OTU picking.

Some of the relevant information contained in this output is the total

number of samples (90), the total number of OTUs (783), the number

of reads (10,637,688), and the number of OTUs per sample. Applying

the above heuristic, we could select a subsampling depth of 7410 sequences.

However, because we have run three different OTU picking approaches

and we want to compare them, we must search for the rarefaction level

that best fits the three OTU tables. Below are the summarized information

for the de novo OTU table and the closed-reference OTU table,

respectively:

print_biom_table_summary.py -i $PWD/denovo_otus/otu_table_filtered.

biom

Num samples: 93

Num observations: 600

Total count: 11122386.0

Table density (fraction of non-zero values): 0.4344

Table md5 (unzipped): b002dd85c93fd9d0571ff23b05d21dde

Counts/sample summary:

Min: 0.0

Max: 497234.0

Median: 108322.0

Mean: 119595.548387

Std. dev.: 93487.3335598

Sample Metadata Categories: None provided

Observation Metadata Categories: taxonomy

Counts/sample detail:

BLANK7.732497: 0.0

BLANK8.732522: 0.0

Jordan.Lisette.TG.Abd.732467: 0.0

BLANK4.732555: 1.0

BLANK5.732537: 1.0

Joshua.Jose.WTAbd.732533: 1.0

BLANK2.732552: 3.0

Nick.Krishna.TG.Fec.732513: 3.0

TH.CVA.WT.Oral.732491: 3.0

BLANK3.732479: 5.0
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BLANK6.732470: 9.0

Elizabeth.Chris.WT.Abd.732490: 10.0

Uri.Jake.TGAbd.732468: 10.0

TH.CVA.WT.Abd.732477: 13.0

BLANK10.732524: 825.0

Elizabeth.Chris.WT.Oral.732520: 7376.0

Joey.Aaron.Kyle.WT.Abd.732541: 35655.0

. . .

Wang.TG.Cec.732527: 394351.0

TH.CVA.WT.Ile.732517: 497234.0

print_biom_table_summary.py -i $PWD/closed_ref_otus/

otu_table_filtered.biom

Num samples: 90

Num observations: 673

Total count: 9434459.0

Table density (fraction of non-zero values): 0.4250

Table md5 (unzipped): 257b528478a2700c72f979ce8d9a9a1c

Counts/sample summary:

Min: 1.0

Max: 347785.0

Median: 90092.0

Mean: 104827.322222

Std. dev.: 78560.4683831

Sample Metadata Categories: None provided

Observation Metadata Categories: taxonomy

Counts/sample detail:

BLANK4.732555: 1.0

BLANK5.732537: 1.0

Joshua.Jose.WTAbd.732533: 1.0

BLANK3.732479: 2.0

Nick.Krishna.TG.Fec.732513: 2.0

TH.CVA.WT.Oral.732491: 2.0

BLANK2.732552: 3.0

Uri.Jake.TGAbd.732468: 5.0

BLANK6.732470: 7.0

Elizabeth.Chris.WT.Abd.732490: 10.0

TH.CVA.WT.Abd.732477: 12.0

BLANK10.732524: 710.0
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Elizabeth.Chris.WT.Oral.732520: 7205.0

Elizabeth.Chris.WT.Col.732481: 22652.0

. . .

TH.CVA.WT.Fec.732553: 329988.0

TH.CVA.WT.Ile.732517: 347785.0

From the above output, we see that a reasonable rarefaction level for the

three tables is 7205 counts per sample, derived from the closed-reference

OTU picking.

Once the subsampling depth is chosen, we can execute the

core_diversity_analyses.py command over the three OTU tables. We

provide the subsampling depth via the -e parameter, the OTU table via

the -i parameter, the mapping file through the -m parameter, and the meta-

data categories to use in categorical analyses through the -c parameter. The -o

parameter is used to provide the output directory and the -a -O 64 are used to

run the command in parallel using 64 processes.

mkdir $PWD/diversity_analysis

core_diversity_analyses.py -i $PWD/open_ref_otus/otu_table_filtered.

biom -m $PWD/IQ_Bio_16sV4_L001_map.txt -t $PWD/open_ref_otus/

rep_set.tre -e 7205 -c GENOTYPE,BODY_SITE -o $PWD/

diversity_analysis/open_ref -a -O 64

core_diversity_analyses.py -i $PWD/denovo_otus/otu_table_filtered.

biom -m $PWD/IQ_Bio_16sV4_L001_map.txt -t $PWD/denovo_otus/

rep_set.tre -e 7205 -c GENOTYPE,BODY_SITE -o $PWD/

diversity_analysis/denovo -a -O 64

core_diversity_analyses.py -i $PWD/closed_ref_otus/

otu_table_filtered.biom -m $PWD/IQ_Bio_16sV4_L001_map.txt -t $PWD/

gg_12_10_otus/trees/97_otus.tree -e 7205 -c GENOTYPE,BODY_SITE -o

$PWD/diversity_analysis/closed_ref -a -O 64

The core_diversity_analyses.py command filters the OTU table

before executing the diversity analyses. The filter removes samples

from the OTU table that do not have at least the user-defined subsampling

depth (7205 in our case). This filtering removes low-coverage samples

from the OTU table, because they are not informative enough to

be included in the study. After these samples have been filtered, the script

performs the rarefaction step at the given subsampling depth.



396 José A. Navas-Molina et al.

Author's personal copy
The output of this script is an HTML file that can be opened in a Web

browser (Fig. 19.4). This HTML file gives access to the results of the differ-

ent diversity analysis performed (taxa summaries, a-diversity, b-diversity,
and category significance) which will be explained in further sections.

For the following downstream analysis, we have used the OTU table and

phylogenetic tree resulting from the open-reference OTU picking

approach. In cases where we are performing comparisons between OTU

picking approaches, we will specify which approaches we have used.

4.2.1 Taxa summaries
Oneway to visualize theOTUs in each sample is a taxa summary, which sum-

marizes the relative abundance of the taxa present in a set of samples on mul-

tiple taxonomic levels (e.g., phylum, order, etc.) (see Fig. 19.5). This provides

a quick way to identify samples that may be drastically different from others

(i.e., outliers) and visually identify expected patterns and differences between

and among samples. For example, this tool can be used to identify patterns

such as differences in the relative abundance of Firmicutes and Bacteroidetes

in the gut microbiomes of lean versus obese mice, e.g., Ley, Backhed,

Turnbaugh, Lozupone, Knight, and Gordon (2005). In our example, the taxa

summary shows that the fecal, colon, and cecum samples appear to be similar

in composition in that their dominant phyla are present in similar relative

abundances. These patterns can then be statistically tested using other

methods, either within QIIME or elsewhere. QIIME contains a workflow

called summarize_taxa_through_plots.py that generates user-specified plot

types, including bar, pie, and area graphs. These graphs provide a way to visu-

ally compare the composition of each sample or of groups of samples. An

OTU table with assigned taxonomies is the only required input file, and

options allow the user to summarize across categories (using themetadata file),

at different taxonomic levels, or only using OTUs that are present at abun-

dances higher or lower than user-defined thresholds. The Web interface

allows a scroll-over feature that identifies the taxonomy of the separate taxa.

Additional output files include image files of the charts and legends, and tab-

delimited files of the calculated abundances, which can then be further filtered

and manipulated for downstream statistical analyses.

4.2.2 Diversity analysis
Microbial ecology studies the diversity of microorganisms by characterizing

bacterial communities in different environments and determining the factors

that drive diversity in these communities (Atlas & Bartha, 1998). Whittaker

(1960) and Whittaker (1972) define different types of measurements of



Figure 19.4 HTML result from core_diversity_analyses.py. This HTML file sum-
marizes and gives access to the results of the diversity analyses conducted on the given
OTU table.
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Figure 19.5 A snapshot of the taxa summary of the example dataset using the web interface. Samples have been grouped and averaged by
body site, and taxonomic composition is shown on the phylum level. Each column in the plot represents a body site, and each color in the
column represents the percentage of the total sample contributed by each taxon group at phylum level. The taxa summaries plot help us to
see which taxon groups are more prevalent in a sample. For example, the fecal samples are dominated by Bacteroidetes, while mouth and
skin samples are dominated by Proteobacteria. We can also see that Fusobacteria is only present at appreciable levels in the skin samples.
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diversity as alpha-, beta-, and gamma-diversities. Alpha-diversity is defined

as the diversity of organisms in one sample or environment. Beta-diversity is

the difference in diversities across samples or environments. Finally, gamma-

diversity (g-diversity) measures the diversity at a broader scale, such as a

province or region. Several different metrics of alpha- and beta-diversity

are implemented in QIIME pipeline. Diversity measurements and their

applications in microbial have been discussed in detail elsewhere (Jost,

2007; Kuczynski, Liu, et al., 2010; Lozupone & Knight, 2008), and here,

we focus on examples of their application.

4.2.3 Alpha-diversity analysis
QIIME can generate plots showing the results of alpha-diversity, allowing

the user to choose the diversity metric and different rarefaction levels

(Fig. 19.6). These images are often used to estimate the true species richness

of a community.

QIIME implements dozens of the most widely used alpha-diversity indi-

ces, including both phylogenetic indices (which require a phylogenetic tree)

and nonphylogenetic indices. Users can obtain a list of the alpha-diversity

indices implemented in QIIME by passing the parameter -s to the

alpha_diversity.py script. Phylogenetic metrics have been especially useful

in our experience because they provide additional power by accounting for

the degrees of phylogenetic divergence between sequences within each sam-

ple. Thus, for alpha-diversity, we recommend phylogenetic distance (PD)

(Faith, 1992) over OTU counts; however, the choice of metric will depend

on the question. In particular, one might be interested in pure estimates of

community richness (such as the observed number of OTUs or the Chao1

estimator of the total number that would be observed with infinite sam-

pling), in pure estimates of evenness, or of measures that combine richness

and evenness such as the Shannon entropy (if there is no hypothesis in

advance about which richness measure is appropriate, remember to correct

for multiple comparisons if many are applied to the same dataset). Here is an

example of how to compute rarefaction curves for three different alpha-

diversity metrics using a QIIME parameters file:

echo “alpha_diversity:metrics shannon,PD_whole_tree,observed_species”

> alpha_params.txt

alpha_rarefaction.py -i $PWD/open_ref_otus/otu_table_filtered.biom -m

$PWD/IQ_Bio_16sV4_L001_map.txt -o $PWD/diversity_analysis/

alpha_rare_open_ref_uneven -a -O 64 -n 20 --min_rare_depth 1000 -e

340000 -p $PWD/alpha_params.txt -t $PWD/open_ref_otus/rep_set.tre



Figure 19.6 Alpha-diversity curves at different rarefaction depths using different OTU
picking methods. Each line represents the results of the alpha-diversity phylogenetic
diversity whole tree metric (PD whole tree in QIIME). (A), (C), and (E) represent alpha-
diversity of each sample at a different sequence depth in each of the OTU picking pro-
tocols (closed-, open-reference, and de novo). In closed-reference, the diversity plateaus
(reaches an asymptote) because only OTUs in the reference database already can be
considered, greatly reducing the OTU number over what is possible if the sequences
are clustered de novo. Comparing these curves is difficult because the sequencing depth
differs among samples. (B), (D), and (F) show differences in alpha-diversity between the
two mouse genotypes, wild type (WT: orange) and transgenic (TG: blue), using the
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This step generates an interactive HTML document with figures

showing the results for each alpha-diversity metric and for each group

of samples. Curves reach asymptotes when the sequencing effort (sequenc-

ing depth) does not contribute additional OTUs. In this sense, curves

would differ in their shape as a function of the selected OTU picking

method.

Comparisons should be adjusted to the same depth of sequencing. Rar-

efaction curves can be useful for assessing the sequencing effort sufficient for

representing and comparing the microbial communities (Fig. 19.6). How-

ever, although rarefaction curves were widely used during the era of Sanger

sequencing, when most communities were undersampled, it is often more

useful today to report the coverage and the estimated and observed numbers

of OTUs at one rarefaction depth rather than to use a figure for rarefaction

curves.
4.2.4 Beta-diversity analysis
Beta-diversity can also be calculated from the rarefied OTU tables, compar-

ing the microbial communities based on their compositional structures.

As with alpha-diversity, QIIME can compute many phylogenetic and

nonphylogenetic beta-diversity metrics (shown by the command

beta_diversity.py -s). Of these, we have found UniFrac to be most gen-

erally useful in revealing biologically meaningful patterns. Unifrac measures

the amount of unique evolution within each community with respect to

another by calculating the fraction of branch length of the phylogenetic tree

that is unique to either one of a pair of communities (Lozupone et al., 2005).

QIIME implements several variants of Unifrac, including weighted and

unweighted Unifrac. The weighted Unifrac metric is weighted by the dif-

ference in probability mass of OTUs from each community for each branch,

whereas unweighted Unifrac only considers the absence/presence of the

OTUs (Lozupone, Hamady, Kelley, & Knight, 2007). Weighted Unifrac
different OTU picking approaches. Both curves show the same rarefaction levels, all-
owing easier comparisons between categories. The curves again level off, showing that
the sequencing effort is sufficient to detect most of the OTUs (this saturation can be
confirmed using Good’s coverage, or conditional uncovered probability, or other formal
coverage statistics). The error bars show the standard error of themean diversity at each
rarefaction level across the multiple iterations.
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is thus recommended for detecting community differences that arise from

differences in relative abundance of taxa, rather than in which taxa are pre-

sent. Like other metrics considering taxon abundance, weighted Unifrac is

sensitive to the bias from DNA extraction efficiency, PCR amplification,

etc.; this may explain why, in our hands at least, unweighted UniFrac has

often provided results that correlate better with clinical or environmental

variables than does weighted UniFrac. The choice of metrics is critical in

beta-diversity analysis as metrics differ substantially in their ability to detect

clustering or gradient patterns among microbial communities on the same

dataset (Arumugam et al., 2011; Ravel et al., 2012; Schloss &

Handelsman, 2006). See Kuczynski, Liu, et al. (2010) for a detailed discus-

sion of the performance of different nonphylogenetic metrics.

QIIME calculates the beta-diversities between each pairs of input sam-

ples, forming a distance matrix. The distance matrix then can be visualized

with methods such as PCoA (Mardia, Kent, & Bibby, 1979) and hierarchical

clustering (Tryon, 1939), both of which have beenwidely used for data visu-

alization for decades. PCoA transforms the original multidimensional matrix

to a new set of orthogonal axes that explain the maximum amount of inertia

in the dataset (Gower, 1966; Mardia et al., 1979) and the current implemen-

tation in QIIME scales to thousands of samples. We are currently evaluating

approximate methods that will allow scaling to millions of samples

(Gonzalez, Stombaugh, Lauber, Fierer, & Knight, 2012). QIIME allows

the PCoA plots to be visualized interactively in three-dimensions, currently

using the KiNG viewer (Chen, Davis, & Richardson, 2009). To assess the

stability of the PCoA plot, jackknife resampling can be performed on the

OTU table, repeating the PCoA procedure for each resampled table and

plotting the aggregate results as confidence ellipsoids around the sample

points (Fig. 19.7). Jackknifing is recommended because many diversity met-

rics, including UniFrac, are sensitive to the number of sequences per sample

(Lozupone, Lladser, Knights, Stombaugh, & Knight, 2011).

Taxonomic information can be displayed on top of the PCoA using

biplots (Fig. 19.8) (this analysis requires the output file from previous taxon

summary step). The coordinates of a given taxon are computed as the

weighted average of the coordinates of all samples, where the weights are

the relative abundances of the given taxon in the set of samples. This plot

is particularly suited for identifying taxa that drive the differentiation

between groups of microbial communities.

Another popular method for finding relationships among samples is hier-

archical clustering, which groups samples together into a tree. Although



Figure 19.7 PCoA plots of unweighted Unifrac beta-diversity. Panels A–C show
jackknifed replicate results for the example data set using de novo OTU picking,
closed-reference OTU picking, and open-reference OTU picking, illustrating different
results from the three OTU picking approaches (Table 19.3). Each dot represents a sam-
ple, either from aWTmouse (orange) or TGmouse (blue). The two groups are not clearly
separated, probably because the data set is contaminated (recall that this is a class pro-
ject and different participants varied in their dissection skills). The size of the ellipsoids
shows the variation for each sample calculated from jackknife analysis. These plots are
generated by the command jackknifed_beta_diversity.py -i $PWD/den-

ovo_otus/otu_table_filtered.biom -t $PWD/denovo_otus/rep_set.tre -m

$PWD/IQ_Bio_16sV4_L001_map.txt -o $PWD/diversity_analysis/jk_denovo

-e 7205 -a -O 64 (the input parameters should be adapted for using the OTU tables
from different OTU picking approaches). Panel D shows the beta-diversity PCoA plot
of a data set from the “keyboard” data set (Fierer et al., 2010) which links individuals
to their computer keyboard through microbial community similarity. Each dot repre-
sents a microbial community sampled from either fingertips or keyboard keys from
three individuals, annotated by the three colors shown in the plot. In contrast to panels
A–C, panel D shows themicrobial communities well separated by individual in the PCoA
plot.
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Figure 19.8 Biplot of the example data set. This is the unweighted Unifrac beta-
diversity plot, similar to Fig. 19.7, with labels for the most five abundant phylum-level
taxa added. The size of the sphere for each taxon is proportional to the mean relative
abundance of that taxon across all samples. This plot is created by the command
make_3d_plots.py -i $PWD/diversity_analysis/open_ref/bdiv_even7205/

unweighted_unifrac_pc.txt -m $PWD/IQ_Bio_16sV4_L001_map.txt -t $PWD/

diversity_analysis/open_ref/taxa_plots/table_mc7205_sorted_L3.txt

–n_taxa_keep 5 -o $PWD/diversity_analysis/3d_biplot.
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hierarchical clustering can be effective in some cases, it should be used with

caution because the eye can easily be drawn to incorrect relationships (such

as samples that are adjacent in terms of the order of their labels but are topo-

logically far apart in the tree). In general, we recommend using PCoA as a

method of detecting grouping in the data but demonstrate hierarchical clus-

tering here as an example. Here, we analyze the beta-diversity distance

matrix using UPGMA, which forces the samples into an ultrametric tree

(i.e., a tree in which the distance from the roots to the tips is the same

for every tip) (Fig. 19.9). The resulting tree file is in Newick format and

can be visualized by programs including TopiaryExplorer (Pirrung et al.,

2011), the R package ape (Paradis, Claude, & Strimmer, 2004), and the

package distory (Chakerian & Holmes, 2012). UPGMA can also be applied

to the jackknifed subsamples to provide an estimate of the statistical confi-

dence in the clustering, by showing the frequency of each nodes in the orig-

inal full data set cluster that are supported by the jackknife replicates. We

generally recommend against the use of hierarchical clustering as a method



Figure 19.9 Bootstrapped UPGMA clustering on the example data set. The tree is
shown with the internal nodes colored by bootstrap support (red: 75–100%, yellow:
50–75%, green: 25–50%, and blue: <25%). Although this visualization is popular in
the literature, we generally recommend alternatives such as PCoA.
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for identifying and visualizing sample groupings, so have not invested as

much effort in enabling this technique in QIIME as has been invested in

other visualizations. However, if you do plan to use hierarchical clustering,

it is important to be aware that substantial work has been done on more

effective visualization methods, for example, in distory (Chakerian &

Holmes, 2012), and performing additional analyses outside QIIME may

allow improvements over the default visualizations.
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4.2.5 Statistical significance of differences in alpha- and beta-diversity
Which statistical tests should be applied depends on the particular hypotheses

and predictions defined a priori in a given research study. QIIME implements

several scripts that perform a broad range of statistical tests between samples

and groups of samples using both alpha- and beta-diversity measurements.

For alpha-diversity, the compare_alpha_diversity.py script performs com-

parisons between groups of samples. The script uses the alpha-diversity mea-

surements of samples standardized to a given number of sequences per

sample and performs nonparametric two-sample t-tests (i.e., using Monte

Carlo permutations to calculate the p-value), comparing each pair of groups

of samples. Rarefaction is a critical step in these analyses, as noted earlier,

because typically diversity estimates depend on the number of sequences

per sample. At the maximum rarefaction depth, WT and TG mice did

not show differences in alpha-diversity as measured by PD metric (WT:

(mean� s.d.)¼45.19�10.6; TG: 40.01�9.5; t¼�2.17, p¼0.102). We

also tested for differences in alpha-diversity between body sites. We found

differences between cecum and ileum (cecum (mean� s.d.)¼51.1�3.6;

ileum: 36.72�8.2; t¼5.35, p¼0.028), cecum and mouth (mouth:

29.54�10.1; t¼6.62, p¼0.028), and feces and mouth (feces: 48.4�4.0;

t¼5.47, p¼0.028). None of the other pairs of comparisons between body

sites showed significant differences in alpha-diversity (colon: 46.0�9.2;

multitissue: 46.26�9.1; skin: 42.13�7.4; all p-values >0.056).

The appropriate statistical tests of beta-diversity also depend on the

research question being asked. These tests compare sets of distances

between samples in the distance matrix. Careful attention must be paid

to both Type I error (rejecting the null hypothesis when it is actually true)

and Type II error (accepting the null hypothesis when it is actually false,

i.e., lack of statistical power). Type I error is more likely when variance

is unequal between groups and when many comparisons are performed

on the same data (although multiple comparison corrections correct for

the increased Type I error, they often raise the Type II error rate instead).

As always, results should be interpreted with caution and common sense.

A highly statistically significant result stemming from data with a low-

correlation coefficient may indicate that a relationship has little biological

meaning, and examining the scatterplot to see if the result is driven by a

few outliers would be prudent. Further theoretical validation (especially

of the multivariate statistical tests) is also needed, especially because the dis-

tributions underlying microbial community data have in general not yet

been well characterized.
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Comparisons between distance matrices are performed in QIIME using

the compare_distance_matrices.py script. This script can perform analyses

including the Mantel test, the partial Mantel test, and the Mantel Cor-

relogram. TheMantel test is a nonparametric test that compares two distance

matrices and calculates a correlation coefficient and a significant p-value

using permutations that preserve the rows and columns. For the purpose of

showing some examples (because the mouse data do not include a time series

component), we will use the sequence dataset published by Caporaso,

Kuczynski, et al. (2010), where the authors studied variation in the bacterial

community in the human gut over time series. We will compare the Unifrac

distance matrix and a distance matrix as differences in days since the treat-

ment started. Both distance matrices showed a significant correlation

(Mantel test: p¼0.035), showing that bacterial communities were more

similar as they were close in sampling. The Mantel test measures the overall

correlation between distance matrices, but Mantel Correlograms measure

this effect when taking into account the distances between samples marked

by specific metadata variables. Essentially, the second distance matrix (in our

case, days since the treatment started) is divided into classes. The classes into

which the second distance matrix (days after experiment started) is deter-

mined by Sturge’s rule, a method for determining the width of bars in a his-

togram based on the binomial formula. Then Mantel tests are run between

these distance classes and the beta-diversity distance matrix. We found that

none of the distance classes were significantly related to the bacterial com-

munity (Fig. 19.10: all comparisons p>0.120, after Bonferroni correction

for multiple comparisons). TheMantel test showed us that there is an overall

correlation between bacterial community and “days after the experiment

started” (samples collected closer in time had more similar bacterial commu-

nities), and Mantel Correlogram showed that there is no significant corre-

lation between the bacterial community and any of the classes into which the

“days after the experiment started” matrix was divided. In other words, in

this case, discretization of the data into a few timepoint classes led to an

undetectable pattern; in contrast, use of the whole time series yielded an

interpretable result. However, in other datasets, the reverse is often true,

especially if the variation is not monotonic (e.g., in the case of seasonal

variation).

The partial Mantel test is similar to the Mantel test, except that the anal-

ysis is controlled by a third variable. When we compare the beta-diversity

distance matrix with days after the experiment started by controlling by sam-

pling date, we find the same trend noted before (partial Mantel test:
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p¼0.010). Samples collected close in time have similar bacterial communi-

ties and this effect is independent of the date of collection.

Several visual and statistical tests have been implemented in QIIME in

order to compare between and within beta-diversity distances. Distance his-

tograms are an easy way to compare both types of distances graphically

(make_distance_histograms.py). The output is an html file that shows as

many histograms as categories. It is very useful to compare all-within “cat-

egory” against all-between “category” or the distribution of distances within

each group (Fig. 19.11). Probably a more useful tool to compare these beta-

diversity distances is by means of box-plots (make_distance_boxplots.py,

Fig. 19.12). The box-plot script generates a box-plot graph and performs

a t-test. Box-plots showed that there were no differences between the dis-

tances within mouse type and between types. However, the statistical test

shows highly significant differences (p<0.001) when comparing within

and between distances. Once again, we recommend caution and common

sense when the p-values are interpreted. It is likely to get a significant
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Figure 19.11 (A) Histogram showing distribution of distances between (light brown)
and within (dark brown) mice gut microbiota taking into account both wild-type and
transgenic mouse groups. (B) Distribution of within distances in gut bacterial commu-
nity of wild-type mice (light orange) and transgenic ones (blue).
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p-value, although a close inspection of the box-plot reveals that standard

error bars overlap. Basically, this result is due to the large number of com-

parisons: a small Student t-statistic (obtained when differences between two

data sets are small) and these large degrees of freedom may be highly signif-

icant (i.e., the two data sets are very different) even with conservative mul-

tiple test corrections (as Bonferroni).

Other multivariate analyses provide additional powerful tools for explor-

ing significant relationships between the beta-diversity distance matrix and

factors or covariates. compare_categories.py offer different statistical tests,

where ANOSIM and adonis are usually employed. ANOSIM is a nonpara-

metric statistical test that compares ranked beta-diversity distances between

different groups and calculates a p-value and a correlation coefficient by
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permutation. Adonis partitions the variance in a similar way to the analysis of

variance (ANOVA) family of tests, specifically testing variation within a cat-

egory is smaller or greater than variation between categories. It calculates a

pseudo F-value, a p-value, and a correlation coefficient (R2). Significant

p-values must be interpreted together with theirR2 values to infer biological

meanings from the results. It is worth mentioning here that PERMANOVA

and adonis are similar statistical methods and usually provide equivalent

results. However, PERMANOVA only allows categorical factors, whereas

both categorical and continuous variables may be used in adonis. Both

ANOSIM and adonis analyses indicate that bacterial communities in WT

and TG mice significantly differ from one another (ANOSIM:

R2¼0.134, p<0.001; adonis, R2¼0.046, p<0.001). However, the corre-

lation coefficients are low, so the significant p-values need to be interpreted

cautiously because this result may not be biologically relevant.

4.2.6 OTU networks
Network-based analysis can sometimes be very useful for displaying how

OTUs are partitioned between samples, and how samples are related each

other, although we have found that this analysis only works well for datasets

in which the samples are not all equally connected. Networks are therefore a

powerful way for visually displaying certain large and complex datasets to

emphasize similarities and differences among samples. Network analyses

are implemented in QIIME through the script make_otu_network.py. This

script generates the OTU-network files to be passed into Cytoscape

(Shannon et al., 2003) and statistics for those networks (specifically, a bipar-

tite graph in which nodes represent either OTUs or samples, and edges rep-

resent a connection between an OTU and a sample; Ley et al., 2008).

Cytoscape is not wrapped in the QIIME pipeline, and it is run as a separate

program. The files used by Cytoscape 2.8.2 are the real edge table (rea-

l_edge_table.txt) which contains the columns “from,” “to,” “eweight,”

and “consensus_lin,” among others dictated by the headers in the mapping

file; and the real node file (real_node_table.txt) which contains a node for

each OTU and each sample in the study. It uses the OTU file and the user

metadata mapping file.

The visual output of this analysis is a clustering of samples according to

their shared OTUs (i.e., samples that share more OTUs cluster closer

together, as do OTUs shared by more samples): samples and OTUs are rep-

resented as dots in the space (nodes) and connected by lines (edges). The

degree to which samples cluster is based on the number of OTUs shared
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between samples, and this is weighted according to the number of sequences

within an OTU.

In the network diagram, both types of nodes, OTU nodes and sample

nodes, can be easily modified using Cytoscape’s graphical user interface,

with symbols such as filled circles for OTUs and filled squares for samples.

If an OTU is found within a sample, both nodes are connected with a line

(an edge). The nodes and edges can then be colored to emphasize certain

aspects of the data.

This method is not simply used for descriptive visualizations: the connec-

tions within the network can also be analyzed statistically to provide support

for the clustering patterns displayed in the network. A G-test for indepen-

dence is used to test whether sample nodes within categories (such as within

a genotype, in our example mouse study) are more connected within than a

group than expected by chance. Each pair of samples is classified according

to whether its members shared at least one OTU, and whether they share a

category. Pairs are then tested for independence in these categories (this asks

whether pairs that share a category are also equally likely to share an OTU).

This statistical test can also provide support for an apparent lack of clustering

when it appears that a parameter is not contributing to the clustering.

In our example dataset, mouse samples show some degree of clustering in

the space depending on whether the genotype is WT or TG (Fig. 19.13).

These clusters in the network were significantly different (G-test:

p<0.001). Surprisingly, bacterial communities of mice did not visually clus-

ter by body site, although the statistical test shows highly significant differ-

ences in samples from different body sites. These results must be interpreted

cautiously. The degrees of freedom in the statistical test depend on the num-

ber of comparisons, so highly significant results might be obtained even

when differences between clusters are slight. In other cases, these differences

are obvious and easy to interpret. In the first application of this analysis in

microbial ecology, the gut bacteria of a variety of mammals was surveyed

and the network diagrams were colored according to the diets of the animals,

which highlighted the clustering of hosts by diet category (herbivores, car-

nivores, omnivores). In a later meta-analysis of bacterial surveys across hab-

itat types, the networks were colored in such a way that the phylogenetic

classification of the OTUs was highlighted: this analysis revealed the dom-

inance of shared Firmicutes in vertebrate gut samples versus a much higher

diversity of phyla represented among OTUs shared among environmental

samples (Ley et al., 2008).



Figure 19.13 OTU-network bacterial community analysis applied in wild-type and
transgenic mice. (A) Network colored by genotype (wild type: blue; transgenic: red).
Control sample (yellow dot) is external in the network and several OTUs are not shared
withmice. Although we can see some degree of clustering, discrimination by genotypes
is difficult to assess. (B) Network colored by body site (mouth: yellow; skin: red; ileum:
blue; colon: pink; cecum: orange; feces: brown; and multitissue samples: green).
A control sample is colored in gray.
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There is no clear sample clustering by body site, suggesting that there is

not a core set of OTUs that differentiates one site from another.

This OTU-based approach to comparisons between samples provides a

counterpoint to the tree-based PCoA graphs derived from the UniFrac ana-

lyses. In most studies, the two approaches reveal the same patterns. They can,

however, reveal different aspects of the data. The network analysis can pro-

vide taxonomic connections among samples in a visual manner, whereas

PCoA–UniFrac clustering can reveal subclusters that may be obscured in

the network. The principal coordinates can be pulled out individually

and regressed against other metadata; the network analysis can provide a

visual display of shared versus unique OTUs. Thus, together these tools

can be used to draw attention to different aspects of a dataset.
4.2.7 OTU heatmaps
Another method to visualize the relationships between OTUs and samples is

the heatmap, which is widely used for other applications in molecular biol-

ogy (Wilkinson & Friendly, 2009). This method was initially developed by

Loua (1873) to visualize population characteristics of 20 districts of Paris.
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In our case, heatmaps can be used for exploratory analysis of

microbiomes by mapping abundance values to a color scale in a condensed,

pattern-rich format, in which each row corresponds to an OTU and each

column corresponds to a sample. A good heatmap graphic can generate

hypotheses about sample and/orOTU clustering in the data, which can then

be followed up with additional more formal analyses. Two key structural

aspects of a heatmap graphic greatly affect whether it will reveal interpretable

patterns: (1) the ordering of the axes and (2) the color scaling.

QIIME can create OTU heatmaps using two different scripts:

make_otu_heatmap.py and make_otu_heatmap_html.py. The first script gener-

ates a heatmap in which OTUs are represented in rows and samples in col-

umns. OTUs and samples can be sorted and clustered by the phylogenetic

tree and by the UPGMA hierarchical clustering, respectively. However,

the visualizations of both trees (phylogenetic and hierarchical) in the final

heatmap are not currently implemented directly in QIIME, and these hier-

archical displays must be prepared using external software such as R. QIIME

also supports sample clustering by a metadata category if the user provides a

mapping file. The samples will be clustered within each category level using

Euclidean UPGMA. The script sort_otu_table.py allows sorting the OTU

table by a category in the mapping file, allowing defining the order of the

samples in the heatmap. Figure 19.14 shows the output of

make_otu_heatmap.py. There we can see a drawback to heatmaps: when

the number of samples or OTUs included in the graphic is too high, the den-

sity of the graphic can be overwhelming. Thus, we recommend that the

OTU table be filtered to a smaller number of samples (or categories) and taxa

to identify the most important patterns, as we will show later in this section.

The second script (make_otu_heatmap_html.py) creates an interactive

OTU heatmap from an OTU table (Fig. 19.15). This script parses the

OTU count table and filters the table by counts per OTU (user specified).

It then converts the table into a javascript array, which can be loaded into a

Web browser. The OTU heatmap displays raw OTU counts per sample,

where the counts are colored based on the contribution of each OTU to

the total OTU count present in the sample (blue: contributes low percentage

of OTUs to sample; red: contributes high percentage of OTUs). This Web

application allows the user to filter the OTU table by number of counts per

OTU. The user also has the ability to view the table based on taxonomy

assignment. Additional features include the ability to drag rows up and down

by clicking and dragging on the row headers and the ability to zoom-in on

parts of the heatmap by clicking on the counts within the heatmap.



Figure 19.14 Heatmap of OTUs presents in the different samples from transgenic and
wild-type mice. The intensity of black shows the abundance of certain OTU in each sam-
ple. Both samples and OTUs are sorted by UPGMA tree and the OTU phylogenetic tree,
respectively.

415Understanding the Human Microbiome Using QIIME

Author's personal copy
Improved OTU heatmap visualizations can be generated using the

plot_heatmap() command in the phyloseq package for R (McMurdie &

Holmes, 2013). This package takes a similar approach to NeatMap

(Rajaram & Oono, 2010), in that it uses ordination results rather than hier-

archical clustering to determine the index order of each axis. For

plot_heatmap, the default color scaling maps a particular shade of blue to

a log transformation of abundance that generally works well for microbiome

data, although the user can select alternative transformations.



Figure 19.15 Interactive heatmap of OTUs presents in the different samples from transgenic and wild-type mice. This visualization is a result
of an HTML file that can be opened in anyWeb browser. The advantage of this heatmap is that it is easy tomanipulate the abundance level for
coloring, or transpose samples and OTUs between columns and rows.

Author's personal copy
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In this example, a key step was proper filtering of the data. We removed

OTUs that appear in only a few samples. The possible contribution to the

graphic of these infrequent OTUs is limited, more often contributing to

“noise” that causes the heatmap to look dark, empty, and uninterpretable

(see Supplemental File 1, http://dx.doi.org/10.1016/B978-0-12-407863-

5.00019-8 and Fig. 19.14). We used a nonmetric multidimensional scaling

(NMDS) of the Bray–Curtis distance to determine the order of the OTUs

and samples. From this representation, it is possible to distinguish high-level

patterns and simultaneously note the samples and OTUs involved. For

instance, all but a fewof themouth samples are in a cluster towards themiddle

of the heatmap. One of the key features of this group is an obvious relative

overabundance of three Firmicutes OTUs, which are among themost abun-

dant in this subset of the data. Similarly, another clear pattern is a distinction

between a group of WT samples from various body sites on the left of the

heatmap that appear to have higher proportions of a number of different Fir-

micutes OTUs, as well as a few specific Bacteroidetes OTUs. This is distinct

from the largest cluster of samples on the right-hand side of the heatmap, in

which many of the most-abundant OTUs are a different subset of Bacteroi-

detes and Firmicutes OTUs.We also found it helpful to further pursue these

high-level patterns by splitting the data into Firmicutes-only and

Bacteroidetes-only subsets, and then plotting new heatmaps with finer-scale

taxonomic labels. This required essentially the same commands and limited

additional effort, well tailored for exploratory interactive analysis, much of

which we have documented in Supplemental File 1 (http://dx.doi.org/

10.1016/B978-0-12-407863-5.00019-8) (Fig. 19.16).

Although heatmaps have been deployed widely in molecular biology,

especially in protein expression studies, some of the other displays we have

discussed such as principal coordinates plots and taxonomy plots often pro-

vide more easily interpretable results. However, summarizing relations

between taxa through ordination plots or network analyses have been shown

to be powerful tools for highlighting similarities and differences among sam-

ples and taxa in ourOTU table, and a carefully constructed heatmap (though

not, in most cases, the default output) can be a useful guide to understanding

and hypothesis generation.

4.2.8 OTU category significance
The experimental design of a microbial study will often involve comparing

two or more groups for differences in the abundance of OTUs, for example,

are there taxa that significantly differ between the control group and the

http://dx.doi.org/10.1016/B978-0-12-407863-5.00019-8
http://dx.doi.org/10.1016/B978-0-12-407863-5.00019-8
http://dx.doi.org/10.1016/B978-0-12-407863-5.00019-8
http://dx.doi.org/10.1016/B978-0-12-407863-5.00019-8


Figure 19.16 Example heatmap of the high-level patterns in the open-reference
dataset. The graphic was produced by the plot_heatmap() function in phyloseq
implemented in R after subsetting the data to the most-prevalent 100 OTUs (see Sup-
plemental File 1, http://dx.doi.org/10.1016/B978-0-12-407863-5.00019-8). The order of
sample and OTU elements was determined by the radial position of samples/OTUs in
the first two aces of a nonmetric multidimensional scaling (NMDS) of the Bray–Curtis
distance. Other choices for distance and ordination method can also be useful.
The horizontal axis represents samples, with the genotype and body site labeled, while
the vertical axis represents OTUs, labeled by phyla. Both axes are further color coded to
emphasize the different categories of labels. The blue-shade color scale indicates the
abundance of each OTU in each sample, from black (zero, not observed) to very light
blue (highly abundant, >1000 reads). The call used to create this figure was the
following, omitting some details to improve the axis labels for publication:
“plot heatmap(openfpp, “NMDS”, “bray”, taxa.label¼“Phylum”, sample.

label¼“bsgt”, title¼”plot heatmap using NMDS/Bray-Curtis for both axes

ordering”).

418 José A. Navas-Molina et al.

Author's personal copy

http://dx.doi.org/10.1016/B978-0-12-407863-5.00019-8


419Understanding the Human Microbiome Using QIIME

Author's personal copy
experimental group? One way to assess this question is to compare the rel-

ative abundances of each microbial member between the two groups. This

functionality is built into a script called otu_category_significance.py. We

can test if there are significant differences in OTU abundance between

mouse genotypes eitherWT or TG.We can assess differences between these

groups using the following command:

otu_category_significance.py -i $PWD/diversity_analysis/open_ref/

table_mc7205.biom -m $PWD/IQ_Bio_16sV4_L001_map.txt -o $PWD/

open_ref_otu_categ_sig_output -c GENOTYPE -s ANOVA

Here, we run an ANOVA to assess the relative abundance of each taxon

in the OTU table between our two genotype groups. The output will be

written to a user-specified file called otu_cat_sig.txt. This document will list

the OTU ID, the raw p-value, the Bonferroni-corrected p-value, the false

discovery rate (FDR) p-value, as well as the relative average abundance for

each of the groups in the selected category (genotype in our case), and the

OTU-taxonomy string (if provided in the initial OTU table). While many

of these taxa may be significantly different between groups according to the

raw p-value, it is extremely important that only p-values that have been

corrected for against multiple comparisons, using either Bonferroni or

FDR, be considered as significant. Many times a user’s OTU table will con-

tain hundreds or thousands of OTUs, and thus a p-value is likely to reach

significance based solely on the large number of statistical comparisons being

computed (for a probability threshold of 0.05, 1 of 20 comparisons results

significant just by chance). It is often very helpful to open the .txt files pro-

duced by otu_category_significance.py in a spreadsheet so that columns

can be sorted according to p-values.

The otu_category_significance.py script also contains several other sta-

tistics for comparing groups. TheG-test can be used to determine if the pres-

ence or absence of a given taxa is significantly different between groups and

can be specified by passing the option -s g_test in the command. The user

can also run a paired t-test to determine whether there are taxa that signif-

icantly differ between two paired points. For example, imagine the exper-

imental design sampled a group of mice before and after a dietary

intervention. Using the paired t-statistic in otu_category_significance.

py would then compare each mouse’s after timepoint to the before time-

point, and test for differences that were consistent across mice, rather than

grouping all the before and after timepoints together. For continuous
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variables, QIIME can calculate the Pearson correlations of OTU abundance

with those variables. QIIME is also capable of longitudinal data analysis,

which is suitable for the samples tracking the same subjects at multiple points

in time, for example, the oral microbiota of six persons after meals in a day.

Specifically, longitudinal Pearson correlation can be calculated, accounting

for intra-subject correlation of measurements.
4.2.9 Machine learning
QIIME can also take advantage of several machine-learning algorithms to

solve two important issues in high-throughput metagenomic studies: cor-

rection of mislabeling and quantifying sample contamination.

This mislabeling problem is an increasing issue as the number of

processed and pooled sequences increases (Knights, Kuczynski, Koren,

et al., 2011). This mislabeling can be addressed using supervised classifiers,

a machine-learning technique that is able to fix incorrect metadata. QIIME

uses the random forest (Breiman, 2001) supervised classifier implemented in

R (Liaw and Wiener, 2002) to recover the mislabeled samples by training

the classifier with the relative abundance taxa (Knights, Costello, &

Knight, 2011). Knights, Kuczynski, Koren, et al. (2011) show that this

approach can even recover up to 30–40% mislabeled samples when the bio-

logical patterns are especially clear.

This same technique can also be applied to find taxa that play a key role in

differentiating groups of samples, as is done in OTU category significance.

However, the difference between OTU category significance and the

machine-learning technique is the type of model the construct. While

the OTU category significance creates an explanatory model (i.e., it gives

a model that best fits the current dataset), the machine-learning technique

creates a predictive model (Knights, Costello, et al., 2011). That is, it creates

a model that is able to generalize future data, minimizing the expected

prediction error.

Since the supervised learning trains a classifier, it is important to provide

useful predictors (OTUs in our case). Thus, it is highly recommended to

filter the input OTU table to remove those OTUs that are present in few

samples (e.g., <10 samples). As in previous analyses, a rarified OTU table

should be used so that artificial diversity induced due to different sampling

effort is removed. In our example dataset, we can use the subsampled OTU

table generated for previous analyses and remove the low-abundance

OTUs:
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filter_otus_from_otu_table.py -i $PWD/diversity_analysis/open_ref/

table_mc7205.biom -o $PWD/diversity_analysis/open_ref/

otu_table_filtered10.biom -s 10

Running the following command, will run the supervised learning algo-

rithm using theGENOTYPE category and 10-fold cross-validation, provid-

ing mean and standard deviation of errors:

supervised_learning.py -i $PWD/diversity_analysis/open_ref/

otu_table_filtered10.biom -m $PWD/IQ_Bio_16sV4_L001_map.txt -c

GENOTYPE -o $PWD/open_ref_supervised_learning_output -e cv10

This script will store several files on the output folder. The most impor-

tant file is summary.txt:

cat $PWD/open_ref_supervised_learning_output/summary.txt

Model Random Forest

Error type 10-fold cross validation

Estimated error (mean þ/- s.d.) 0.23373 þ/- 0.15058

Baseline error (for random guessing) 0.42308

Ratio baseline error to observed error 1.81011

Number of trees 500

The important information in this file is the Ratio baseline error to observed

error, which shows the ratio between the expected error of the random forest

classifier and the expected error of a classifier that always guesses the most-

abundant class (Baseline error). Our recommendation is that a ratio of at least 2

shows a good classification. In our example data set, this value is 1.81011,

which is close to 2 but not enough to be considered a good classification.

The contamination quantification problem is addressed in QIIME using

SourceTracker (Knights, Kuczynski, Charlson, et al., 2011). Given a list of

known source environments and a sink (or set of sinks) environment(s),

SourceTracker uses a Bayesian approach jointly with Gibbs sampling to pre-

dict the quantity of taxa that each source, or an unknown source, contributes

to the taxa that makes up the sink environment. For a more detailed descrip-

tion of the algorithm, see Knights, Kuczynski, Charlson, et al. (2011).

The first step to use SourceTracker in QIIME is to modify the mapping

file of our example dataset and add two columns: SourceSink and Env. The

SourceSink column tells SourceTracker which sample is a source and which

sample is a sink, while the Env column provides the environment. In our

example, we have defined samples from mouth, ileum, cecum, colon, fecal
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pellet, and skin as sources and the whole mouse homogenization as a sink. In

the Env column, we have defined the environments as the body site (mouth,

ileum, cecum, colon, feces, skin, and homogenization).

As a machine-learning algorithm, SourceTracker needs useful OTUs

(predictors) as inputs for training the algorithm. Here, we will use the same

OTU table as used for the supervised_learning.py script. However,

SourceTracker does not yet accept BIOM tables, so we have to transform

them into to a tab-delimited OTU table (note that this table can also be

opened in Excel or other popular tools):

convert_biom.py -i $PWD/diversity_analysis/open_ref/

otu_table_filtered10.biom -o $PWD/diversity_analysis/open_ref/

otu_table_filtered10.txt -b

Then, we can call SourceTracker using the following command (the

$SOURCETRACKER_PATH variable should be defined if you have suc-

cessfully install SourceTracker):

R --slave --vanilla --args -i $PWD/diversity_analysis/open_ref/

otu_table_filtered10.txt -m $PWD/IQ_Bio_16sV4_L001_map_ST.txt -o

$PWD/open_ref_sourcetracker_output < $SOURCETRACKER_PATH/

sourcetracker_for_qiime.r

The output from the SourceTracker algorithm is a set of pdf files that

shows the mixture of the sources that makes up the sink (see Fig. 19.17).

4.2.10 Procrustes analysis
When we want to compare samples in PCoA space that were processed in

different ways, such as different ribosomal RNA subunits, primer sets, or

algorithmic choices for processing, we can use procrustes analysis

(Gower, 1966; Muegge et al., 2011; Vinten et al., 2011). Procrustes analysis

is a statistical shape algorithm that allows us to compare different distribu-

tions by rescaling and applying a rotation matrix, that is, if the group of sam-

ples have the same shape but are in different sizes or orientation, the

algorithm will resize and rotate them to make the shapes fit. As an example,

we present the results of comparing the different OTU picking algorithms,

see Section 4.2.2, where we can see that even as the number of OTU clusters

change the distribution described is similar with a confidence of

MC p-value: 0.00 and M2: 0.097 for closed-reference versus de novo

and MC p-value: 0.00 and M2: 0.035 for closed-reference versus open-

reference. Both cases used the first three axes (i.e., the axes displayed in



Figure 19.17 SourceTracker output showing a bar plot for each sink (mouse) present in the dataset. Each bar is a potential source (body site)
and the height of each bar represents the percentage of taxa the source contributes to the taxa in the sink. The advantage of this visualization
over the other two (area and pie chart) is that it shows error bars that allow to see the variance of the prediction.
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Figure 19.18 Procrustes analysis of different picking algorithms, where we can see that
different OTU-clustering methods yield similar PCoA distributions. PCoA plots are col-
ored by BODY_HABITAT. (A) Comparing samples with clusters picked using the de novo
picking protocol against the closed-reference. (B) Comparing samples with clusters
picked using the open-reference picking protocol against the closed-reference.
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the plot) and 100 repetitions, Fig. 19.18. To generate these plots, we ran

these commands:

transform_coordinate_matrices.py -i $PWD/diversity_analysis/

closed_ref/bdiv_even7205/unweighted_unifrac_pc.txt,$PWD/

diversity_analysis/denovo/bdiv_even7205/unweighted_unifrac_pc.

txt -r 100 -o $PWD/procrustes/closed_ref-denovo

compare_3d_plots.py -i $PWD/procrustes/closed_ref-denovo/

pc1_transformed.txt,$PWD/procrustes/closed_ref-denovo/

pc2_transformed.txt -o $PWD/procrustes/closed_ref-denovo/plot -m

$PWD/IQ_Bio_16sV4_L001_map.txt

transform_coordinate_matrices.py -i $PWD/diversity_analysis/

closed_ref/bdiv_even7205/unweighted_unifrac_pc.txt,$PWD/

diversity_analysis/open_ref/bdiv_even7205/unweighted_unifrac_pc.

txt -r 100 -o $PWD/procrustes/closed_ref-open_ref

compare_3d_plots.py -i $PWD/procrustes/closed_ref-open_ref/

pc1_transformed.txt,$PWD/procrustes/closed_ref-open_ref/

pc2_transformed.txt -o $PWD/procrustes/closed_ref-open_ref/plot -m

$PWD/IQ_Bio_16sV4_L001_map.txt
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4.2.11 SitePainter
Spatial data poses unique challenges, and the types of statistical analyses

described earlier often obscure spatial patterns (Gevers et al., 2012;

Hewitt et al., 2013). SitePainter (Gonzalez et al., 2012) is a Web-based tool

that creates images representing the geographical (spatial) distribution of our

samples, and then color them based on taxonomy summaries (defining

which taxa occur where) and PCoA axes (defining how similar the patches

are along the principal axes).

To create a new image, we suggest using Adobe Illustrator, Inkscape, or

SitePainter. This list is in descending order of usability. In any of these tools,

we need to create a SVG (scalable vector graphics) image that has closed

paths, ellipsoids, and rectangles for any path that we want to color; and open

paths, lines, or text for those that we want SitePainter to ignore. The latter

are useful for static images and give a nice background for the image. Note

that SVG images are text files, so they can be opened in any graphics pro-

gram in the list above or in any text editor. The difference between an open

and a closed path is that the element in has a letter z at the end of the def-

inition of the lines of the path, so, for example, <path d¼"M 10 10 L 30 10

L 20 30 z"> is a closed path but<path d¼"M 10 10 L 30 10 L 20 30"> is an

open one.

There are two main QIIME-generated inputs that should be loaded into

SitePainter: taxa summaries and multidimensional scaling (MDS) technique

results, including NMDS and PCoA. To exemplify the creation and usage of

images in SitePainter, we will filter the OTU table and the beta-diversity file

to only have one mouse. Filtering and summarizing the OTU table:

filter_samples_from_otu_table.py -i $PWD/diversity_analysis/

open_ref/bdiv_even7205/table_mc7205_even7205.biom -m $PWD/

IQ_Bio_16sV4_L001_map.txt -o $PWD/forSitePainter/otu_table_Gail.

biom -s ‘GROUP:Gail’

summarize_taxa.py -i $PWD/forSitePainter/otu_table_Gail.biom -o $PWD/

forSitePainter/taxa_sum -t

Filtering the beta-diversity file and then recalculating PCoA is necessary

every time we add or remove samples of our analyses, because PCoA results

depend on the samples included in the analysis. Thus it is not sufficient to

simply remove samples from PCoA results calculated on a larger set of

samples:
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filter_distance_matrix.py -i $PWD/diversity_analysis/open_ref/

bdiv_even7205/unweighted_unifrac_dm.txt -m IQ_Bio_16sV4_L001_map.

txt -o $PWD/forSitePainter/unweighted_unifrac_dm.txt -s ‘GROUP:

Gail’

principal_coordinates.py -i $PWD/forSitePainter/

unweighted_unifrac_dm.txt -o $PWD/forSitePainter/

unweighted_unifrac_pc.txt

Then we create an image in Adobe Illustrator that represents the mice

and its gastrointestinal tract, Fig. 19.19A. Once this figure is created and

saved in SVG format (this example uses version 1.1 of SVG), we open

the image in any text editor and replace any letter “z” with nothing; this will

destroy all the closed paths and will facilitate manipulation in SitePainter.
Figure 19.19 Image representing themouse and its gastrointestinal tract. (A) Raw image
without samples. (B) Image in SitePainter with samples. (C) and (D) PCoA axis 1 and 2, in
red high values, in blue low values, similar colors represent similar communities. (E) and
(F) Taxonomic distributions of (E) Betaproteobacteria and (F) Gammaproteobacteria, in
red high abundance, in blue low abundance.
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Now, we can open this image in SitePainter by clicking on the pencil/

flower image on the right corner, choosing “Open Image,” and select our

file. Then we add the places that we want to color using the rectangle or

ellipsoid tool, Fig. 19.19B. Now we need to make our samples in the image

match the names of the sample names from our files; for this, we need to

click on “Elem. -> Click to update” on the right menu, and this will show

us the current sample names in the image; then, we double-click on each

one and change the name to make it match the sample name in the mapping

file. Note that SitePainter does not accept sample names with dots (.), so if

the sample name has this character, we need to replace it with an underscore

(_). We do not need to change the QIIME files, as this will happen auto-

matically in SitePainter. When we hover over each name, the sample will

change color, facilitating the identification of the image we are selecting.

If different sites have the same name, they will be colored with the same

value from the QIIME output files.

The final step is to load the resulting QIIME files. To do this, we use the

Metadata loader on the top left of the menu. This opens the file. We then

move the right menu to the “Meta.” tab. Here, we can select which column

we want to use for coloring and then click “Color elements,” to select more,

Fig. 19.19C–F. For detailed instructions about changing colors and other

details, visit http://sitepainter.sourceforge.net/tutorials/index.html.

5. OTHER FEATURES

5.1. Testing linear gradients, including time series

analysis
Recent microbiome surveys have started integrating gradients (commonly

over time) in their study design. We will discuss a first and general approach

for those cases, using the Moving Pictures of the Human Microbiome

Dataset (Caporaso et al., 2011), where two subjects were sampled daily

for up to 396 days in three different body sites (sebum, saliva, and feces).

Note that the mouse dataset that we use as a primary example lacks a natural

temporal ordering in the study design, so we cannot use it as an example for

this analysis.

PCoA plots provide a snapshot about the relative communities of many

samples condensed in a single figure. However, coloring the points in PCoA

space according to a color gradient can be very difficult to understand. A first

approach in this case is to connect the samples belonging to the same sub-

ject/treatment subsequently sorted using the values in the gradient, that is,

http://sitepainter.sourceforge.net/tutorials/index.html


Figure 19.20 Beta-diversity plots for the moving pictures dataset using unweighted
UniFrac as the dissimilarity metric (Caporaso et al., 2011). (A) PCoA plot colored by
the body site and subject. (B) PCoA plot colored by the body site and subject with con-
necting lines between samples. Note in (B) that these lines allow us to track the individ-
ual body sites with a different approach.
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one timepoint after the other (see Fig. 19.20B). An interactive plot like this

can be generated using the following command:

make_3d_plots.py -i $PWD/moving_pictures/unweighted_unifrac_pc.txt -m

$PWD/moving_pictures/merged_columns_mapping_file.txt -o $PWD/

moving_pictures/vectors --

add_vectors¼BODY_SITEHOST_SUBJECT_ID,DAYS_SINCE_EPOCH

An important thing to note here is that because we want to track each of

the three body sites (SampleTypes) for the two subjects (Subject), we need a

column in our mapping file that allows us to make that distinction. Hence

we need to concatenate those two columns in our metadata mapping file

using an external spreadsheet editor or another tool. Also note that the gra-

dient used is a category named DAYS_SINCE_EPOCH (i.e., the number

of days since January 1, 1970). The idea here is to have a common reference

for the collection date of each of the samples.

Although a visualization like the one created in the previous example is

often sufficient, replacing one of the axes in the PCoA plot with the data

explaining the gradient provides a different insight into the analyzed data

(see Fig. 19.21).



Figure 19.21 Three-dimensional plots in which two of the axes are PC1 and PC2 and the
other is the day when that sample was collected in reference to the epoch time.
Although this is not explicitly a beta-diversity plot, this representation allows differen-
tiation of the individual trajectories over time.
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make_3d_plots.py -i $PWD/moving_pictures/unweighted_unifrac_pc.txt -m

$PWD/moving_pictures/merged_columns_mapping_file.txt -o $PWD/

moving_pictures/vectors --add_vectors¼BODY_SITEHOST_SUBJECT_ID,

DAYS_SINCE_EPOCH -a DAYS_SINCE_EPOCH

These visual representations can often identify meaningful patterns. To

statistically support these assertions, ANOVA can be used over the values

grouped by a category of interest. In a case where user wants to test for inde-

pendence between the variation of one group of trajectories and another,

this command could be used:

make_3d_plots.py –i unweighted_unifrac_pc.txt –m mapping_file.txt –o

vectors –add_vectors¼SampleTypeAndSubject,days_since_epoch –a

days_since_epoch

--vectors_algorithm avg --vectors_path anova_stats.txt
5.2. Processing 454 data
We have described the recommended workflow for conducting microbial

community analysis on an Illumina MiSeq dataset. However, QIIME can

also perform microbial community analysis on the 454 platform. The main

advantage of 454 over Illumina is that 454 generates longer sequences, which
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can allow a better taxonomy assignment. However, the 454 technology pro-

duces fewer reads per dollar or per sequencing run (Kuczynski et al., 2012).

The 454 processing workflow differs from the Illumina workflow in the

sequence preprocessing. In this case, the output file from the sequencing

facility is a fasta file containing the reads and a quality score filewhich contains

the score for each base in each sequence included in the fasta file. In this case,

the command used for the 454 preprocessing is split_libraries.py:

split_libraries.py -m Fasting_map.txt -f Fasting_Example.fna -q

Fasting_Example.qual -o slout

Similar to the Illumina processing, this script also performs a quality-

filtering. In this case, the quality-filtering is based on cutoffs for sequence

length, end-trimming, or minimum quality score. However, to successfully

remove the read artifacts, a denoising process has to be performed (Reeder &

Knight, 2010) to reduce the impact of homopolymer runs (runs of the same

base). The 454 denoising process is a slow, computationally intensive prob-

lem that does not scale to large datasets, as it is based on flowgram clustering

(Quince et al., 2011).

5.2.1 Variable-length barcodes
Variable-length barcodes are used for two reasons: to make the number of

flows (rather than the number of bases) constant (Frank, 2009) or to stagger

the reads to reduce bad signal from low complexity at a given position in the

set of amplicons being sequenced. This approach is not recommended today

because such samples are not easily demultiplexed, and there is checksum,

like Hamming or Golay, that allows error correction and improved

sample assignment (Hamady et al., 2008). However, the HMP used

variable-length barcodes to identify their samples within sequencing runs.

Thus, QIIME allows demultiplexing such files by using the parameter -b

in split_libraries.py, as follows:

split_libraries.py -m map_file_with_variable_length_barcodes.txt -f

your_fna.fna -q your_qual.qual -o. split_library_output_ vari-

able_length/ -b variable_length,
5.3. 18S rRNA gene sequencing
QIIME can also be used to perform analysis on 18S rRNA gene sequence

data (in eukaryotes), as well as other markers such as ITS. The main differ-

ence between performing analyses with 18S rRNA gene data instead of 16S
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rRNA gene data (or ITS data) is the reference database used for OTU pick-

ing, the taxonomic assignments, and the template-based alignment building,

since it must contain eukaryotic sequences.

The recommended database to use as a reference for 18S rRNA

sequences is the Silva database (Quast et al., 2013). At the time of writing,

the most recent QIIME-compatible Silva database is the 108 release. Since

this database contains the three domains of life, it can be used as a reference

for 18S rRNA data sets.

When conducting studies mixing 18S rRNA data and 16S rRNA data,

you should take into account that picking OTUs against the Silva database

will assign taxa to all three domains of life. In this case, it is recommended to

split the OTU table by domain, generating an OTU for each domain

(Archaea, Bacteria, and Eukarya). At this point, each of these tables can

be used in downstream analysis in the same way as performed for 16S

rRNA data.
5.4. Shotgun metagenomics
Shotgunmetagenomics is also supported inQIIME, although it is still exper-

imental and it should be used at the user’s own risk. Currently, the QIIME

team recommends the blat method (Kent, 2002) for searching nucleic acid

sequence reads in a reference database, although usearch (Edgar, 2010) is also

supported. The main reason for preferring blat against usearch is that protein

reference database often requires 64-bit applications, and blat is free of

charge, while the 64 bit version of usearch is not.

There are many reference databases (IMG, KEGG, M5nr, among

others), and they all supported by QIIME, since the user only needs to sup-

ply a single fasta file containing the sequence records. The command that

QIIME provides for mapping reads against the reference database is

map_reads_to_reference.py, and it can be performed in parallel using the

parallel_map_reads_to_reference.py script.
5.5. Support for QIIME in R
First published in 1996, “R” is an integrated software application and pro-

gramming language designed for interactive data analysis (R Core Team). It

is available for Linux, Mac OS, andWindows free of charge under an open-

source license (GPL2). Since its inception, R has found a niche as a tool for

interactive statistical analysis through functional programming. Primary

investigation and inference are performed by writing a series of repeatable
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commands as “scripts” that can be recorded and published. This paradigm

lends itself well to reproducible research and is enhanced substantially by

R’s integration with tools for literate programming such as Sweave

(Leisch, 2002), knitr (Xie, 2013), and R markdown (Allaire, Horner,

Marti, & Porte, 2013), as well as data graphics. There are thousands of free

and open-source extensions to R (packages) available from the main

R repository, CRAN, further organized by volunteer experts into

31 task “views” (which are in fact workflow inventories). Among these

are dedicated package lists relevant to microbiome data, including phyloge-

netics, clustering, environmetrics, machine learning, multivariate, and spa-

tial statistics, as well as a separate reviewed and curated repository dedicated

to biological statistics called Bioconductor (over 600 packages).

At present, support for QIIME in R is predominantly achieved

through a package called “phyloseq” (McMurdie & Holmes, 2013) dedi-

cated to the reproducible analysis of microbiome census data in R. phyl-

oseq defines an object-oriented data class for the consistent representation

of related (heterogenous) microbiome census data that is independent of

the sequencing- or OTU-clustering method (storing OTU abundance,

taxonomy classification, phylogenetic relationships, representative biolog-

ical sequences, and sample covariates). The package supports QIIME by

including functions for importing data from biom-format files derived from

more recent versions of QIIME (import_biom) as well as legacy OTU-

taxonomy delimited files (import_qiime and related user accessible

subfunctions). Later editions of phyloseq (>1.5.15) also include an API

for importing data directly from the microbio.me/qiime data repository.

In all cases, these API functions return an instance of the “phyloseq” class

that contains the available heterogenous components in “native” R classes.

phyloseq includes a number of tools for connecting with other microbiome

analysis functions available in other R packages, as well as its own functions

for flexible graphics production built using ggplot2 (Wickham, 2009),

demonstrated in supplemental files (Supplemental File 1, http://dx.doi.

org/10.1016/B978-0-12-407863-5.00019-8) and online tutorials. For

researchers interested in developing or using methods not directly sup-

ported by phyloseq, nor its data infrastructure, the biom-format-specific

core functions in phyloseq have been migrated to an official API in the

biom-format project as an installable R package called “biom,” now

released on CRAN. This also includes some biom-format-specific func-

tionality that is beyond the scope of phyloseq, though support for QIIME

is still likely best achieved using phyloseq.

http://dx.doi.org/10.1016/B978-0-12-407863-5.00019-8
http://dx.doi.org/10.1016/B978-0-12-407863-5.00019-8
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As with some of the earlier examples of QIIME commands with

corresponding output and figures, in this section, we have included some

key R commands potentially useful during interactive analysis in the

R environment. For simplicity, show only results related to the open-

reference OTU data, stored in an object in our examples named open,

and imported into R using the phyloseq command import_biom.

open ¼ import_biom(“path-to-file.biom”, . . .)

Additional input data files can also be provided to import_biom or mer-

ged with open after its instantiation. For clarity, subsets and transformations

of the data in open are stored in objects having names that begin with “open.”

As with the remainder of the examples highlighted in this section, the com-

plete code sufficient for reproducing all results and figures is included in the

R Markdown originated document, Supplemental File 1 (http://dx.doi.

org/10.1016/B978-0-12-407863-5.00019-8), which includes several addi-

tional examples not shown here and is available with supporting files on

GitHub (https://github.com/joey711/navasetal).

Although not always very illuminating, a comparison of OTU richness

between samples and groups of samples can easily be achieved with the

plot_richness command. For the most precise estimates of richness for most

samples, this should be performed before random subsampling or other trans-

formations of the abundance data. Here, open contains data that has already

been randomly subsampled. In Fig. 19.22, we can see that the WT samples

are generally more diverse (higher richness) and somewhat more variable

than the TG samples for essentially all body sites, though the differences

between the two mice genotypes are small.

plot_richness(open, x¼ “BODY_SITE”, color ¼ “GENOTYPE”) þ
geom_boxplot()

This plot command also illustrates the use of a function in ggplot2,

geom_boxplot, that instructs the ggplot2 graphics engine to add an additional

graphical element—in this case, a box-plot for each of the natural groups in

the graphic. These available additional graphical instructions (called “layers”

in the grammar of graphics nomenclature) are embedded with the returned

plot object for subsequent rendering, inspection, or furthermodification, all-

owing for powerfully customized representations of the data.

Here is an example leveraging the abundance bar plot function from

phyloseq, plot_bar, in order to compare the relative abundances of key

phyla between the WT and TG mice across body sites. The first step was

http://dx.doi.org/10.1016/B978-0-12-407863-5.00019-8
http://dx.doi.org/10.1016/B978-0-12-407863-5.00019-8
https://github.com/joey711/navasetal


Figure 19.22 Categorically summarized OTU richness estimates using the
plot_richness function. Samples are grouped on the horizontal axis according to
body site and color shading indicates the mouse genotype. The vertical axis indicates
the richness estimates in number of distinct OTUs, and a separate box-plot is overlaid on
the points for each combination of genotype and body site. The “S.obs,” “S.chao1,” and
“S.ACE” panels show the “rarefied” observed richness, Chao-1 richness, and ACE richness
estimates, respectively.
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actually some additional data transformations (not shown, see Supplemental

File 1, http://dx.doi.org/10.1016/B978-0-12-407863-5.00019-8) in order

to subset the data to only major expected phyla (subset_taxa), merge OTUs

from the same phyla as one entry (merge_taxa), and merge samples from the

same body site and mouse genotype (merge_samples) (Fig. 19.23).

p2 ¼ plot_bar(openphyab, “bodysite”, fill ¼ “phyla”, title ¼ title)

p2 þ facet_gird(�GENOTYPE)

From this first bar plot, it is clear that all body sites from the average WT

mouse have Firmicutes as their phylum of largest cumulative proportion,

except for the “feces,” where it is anyway a close call between Firmicutes

and Bacteroidetes. By contrast, some of the average TG mice samples have

a much higher proportion of Proteobacteria or Bacteroidetes than the

corresponding WT samples. One drawback to this type of stacked bar

http://dx.doi.org/10.1016/B978-0-12-407863-5.00019-8


Figure 19.23 Stacked bar plot of the abundance values in the open-reference dataset.
The bars are shaded according to phyla with each rectangle representing the relative
abundance of a phylum in a particular sample group. The OTU rectangle in each stack is
ordered according to abundance. The horizontal and vertical axes indicate the body site
of the samples and the average fractional abundance of the OTU within the sample
group, respectively. The separate panels “TG” and “WT” indicate the mouse genotype,
achieved automatically by the facet_grid(�GENOTYPE) layer in the command.
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representation is that it is difficult to compare any of the subbars except for

those at the bottom. If needed, this can be alleviated by changing the

facet_grid call such that a separate panel is made for each phyla in the

dataset, as follows (Fig. 19.24):

p2 þ facet_grid(phyla � GENOTYPE) þ ylim(0, 100)

With essentially the same effort to produce, the 14 panels of this second

bar plot graphic allow an easy and quantitative comparison of the relative

abundances of each phylum across body sites and genotype.

Microbiome datasets can be highly multivariate in nature, and dimen-

sional reduction (ordination) methods can be a useful form of exploratory

analysis to better understand some of the largest patterns in the data. Many

ordination methods are wrapped in phyloseq by the ordinate function, and

many more are offered in available R packages. Here, we show an example



Figure 19.24 Alteration of the stacked bar plot shown in Fig. 19.23 with an additional
facet dimension. In this case, an additional argument has been added to the faceting
formula so that the data are separated by a row of panels for each phyla, as well as
a column of panels for each mouse genotype. The color shading and other attributes
generally remain the same with the average cross-category changes for each phylum
more discernible.
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performing MDS on the precomputed unweighted UniFrac distance matrix

for the open-reference dataset. The ordination result (openUUFMDS) is first

passed to plot_scree in order to explore the “scree plot” representing the

relative proportions of variability represented by each successive axis. Both

the ordination result and the original data are then passed to

plot_ordination with sufficient parameters to shade the sample points by

genotype and create separate panels for each body site (Fig. 19.25).



Figure 19.25 MDS ordination results on the unweighted UniFrac distances of the open-
reference dataset. The samples are separated into different panels according to body
site and shaded red or blue if they were from transgenic or wild-type mice, respectively.
The horizontal and vertical axis of each panel represents the first and second axis of the
ordination, respectively, with the relative fraction of variability indicated in brackets.
(Inset) A scree plot showing the distribution of eigenvalues associated with each ordi-
nation axis.
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openUUFMDS ¼ ordinate(open, “MDS, distance ¼ UniFrac[[“unweighted”]]

[[“open””]])

plot_scree(openUUFMDS, “Unweighted Unifrac MDS”)

plot_ordination(open, openUUFMDS, color ¼ “GENOTYPE”) þ geom_point(-

size ¼ 5) þ facet_wrap(�BODY_SITE)

It appears that a subset of the WT samples from all but the mouth and

abdomen-skin body sites cluster towards the left of the plot. This appears

to be the major pattern along the axis that also comprises the greatest pro-

portion of variability in the dataset. At this stage of analysis, it seems
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worthwhile to try to identify which OTU abundances are most different

between these groups, and then perform some formal validation/testing

of these differences.

6. RECOMMENDATIONS

Here, we highlight some of the main aspects to take into account
when performing microbial community analysis:

• Use the open-reference OTU picking approach if your data allow it. It

will reduce the running time and will recover all the diversity in your

samples.

• Perform an OTU quality-filtering based on abundance, by removing

singletons, for instance. See Bokulich et al. (2013) for further discussion

on how to tune this quality-filtering and its effects on downstream anal-

ysis. Quality-filtering is critical for obtaining reasonable numbers of

OTUs from a sample.

• Consider whether you need to remove specific taxa from your study,

such chloroplast or host DNA sequences when analyzing microbial

datasets.

• Remove samples from your study that have low coverage (i.e., low

OTU counts). They are likely uninformative and usually indicate

low-quality reads.

• Rarefy your OTU table in order to mitigate the differences on the

sequencing effort, so the downstream diversity analyses would not be

biased by the artificial diversity generated due to the difference in

sequencing depth.

7. CONCLUSIONS

QIIME is a powerful tool for the analysis of bacterial community all-
owing researchers to recapitulate the necessary steps in the processing of

sequences from the raw data to the visualizations and interpretation of the

results. Two advantages make QIIME very useful: fidelity to the algorithms

used and consistency in the analysis. Fidelity is obtained because QIIME

wraps existing software, preserving the integrity of the original programs

and algorithms designed, created, and tested by the original authors. Con-

sistency is obtained because QIIME can be applied to sequences from dif-

ferent platforms, and once the upstream process is done; the analysis

(downstream) process is the same independent of the sequencing platform
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used. These characteristics, together with the fact that QIIME is open-

source software with continuous support to users via QIIME forum, have

promoted the rapid increase in the QIIME user community since its pub-

lication (Caporaso, Kuczynski, et al., 2010).

Downstream and upstream processes are implemented in QIIME in a

way that offers several options to perform the analyses. In this review, we

discuss and demonstrate the principles for each step, what the scripts do

and how to choose between options. Independent of the use of QIIME, this

review also provides an overview of many of the typical steps in a microbial

community analysis based on analysis of 16S rRNA sequences produced by

high-throughput sequencing. Some of these tools are well developed with a

long history in general ecology, whereas others are still in rapid develop-

ment; we encourage microbial ecologists and bioinformaticians to work

together to create, develop, and implement new strategies and tools that

allow further exploration of this fascinating field.
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